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Preface

‘It is extremely hard these days to write mathematical books, especially astro-
nomical ones.” Thus begins Kepler’s New Astronomy, published in 1609. While
I would not attempt to claim that the problems I have faced are comparable
with those Kepler had to tackle, he was after all working at the cutting edge
of both the mathematics and astronomy of his day; the peculiar difficulties that
face authors of books containing mathematics, but the major thrusts of which
lie elsewhere, do not appear to have changed much over the passage of time.
A balancing act is required: how does one include sufficient technical detail
accurately to describe the procedures involved and not end up losing sight of
the main focus? In the context of a historical survey there is another question:
how faithful should one be to the form in which the mathematics was origi-
nally written? Here, historians and mathematicians writing about history tend
to take different approaches. As a member of the latter category I have taken
the view in this book that it is more important to understand what it is that was
accomplished than precisely how it was achieved.

The mathematical details that are given hopefully serve to provide a more
comprehensive description of the development of astronomical theories than is
usually found in general histories of astronomy. Sometimes the mathematics
is described using the methods available at the time, but on other occasions
modern mathematical language has been used to make the discussion easier
to follow for the modern reader. I have tried to ensure that anachronisms are
labelled clearly as such and that the resulting mixture of old and new is both
informative and not misleading.

There is an enormous number of books written about the history of astron-
omy, a vast subject spanning 4000 years of human history. The story of man’s
gradual appreciation of the nature of the heavens and the development of tech-
niques for predicting the future positions of celestial bodies is fascinating. It
can be appreciated on many levels, and histories of astronomy abound which

ix



X Preface

are designed to appeal to the general public as well as to expert astronomers.
Having a continuous history from 2000 BC to the present day, it is inevitable
that astronomical thought has interacted with progress in many other branches
of science (e.g. mathematics and physics) as well as areas such as philosophy
and theology. Most astronomy today is concerned with objects which lie out-
side our Solar System but, until the nineteenth century, astronomy was the study
of the motion of the Sun, Moon and planets measured against the background
of ‘fixed’ stars. It is my aim in this book to describe the theories of planetary
motion that have been developed, beginning with the homocentric spheres of
Eudoxus and ending with Einstein’s general theory of relativity, with particular
regard to the interaction between progress in astronomy and in mathematics.

Since Babylonian times, astronomy and mathematics have been linked in-
extricably. The needs of astronomy have provided the impetus for research into
many areas of mathematics, and whole new branches of mathematics (e. g.
trigonometry) were developed to aid astronomical calculations. Conversely,
on numerous occasions throughout history breakthroughs in astronomy have
been possible only because of progress in mathematics. This two-way process
pervades science:

Mathematics is an indispensable medium by which and within which science
expresses, formulates, continues, and communicates itself. And just as the language
of true literacy not only specifies and expresses thoughts and processes of thinking
but also creates them in turn, so does mathematics not only specify, clarify and
make rigorously workable concepts and laws of science which perhaps, partially at
least, could be put forward within it; but at certain crucial instances it is an
indispensable constituent of their creation and emergence as well.

(Bochner (1966), p. 256.)

However, most books on the history of astronomy provide only a cursory
treatment of the underlying mathematics on the assumption that such topics
would put people off, and in most books on the history of mathematics the
interaction with astronomical thought is discussed only briefly. For example, in
the preface to The Cambridge Concise History of Astronomy (1998), Michael
Hoskin, describing the post-Newtonian celestial mechanicians, writes: ‘But
while their conclusions were of the keenest interest to astronomers, they were
not themselves astronomers but mathematicians working in the service of as-
tronomy, and so we can disregard the details of their calculations with a clear
conscience.” All this is entirely understandable: the history of astronomy can
be told in a non-mathematical way, and there is far more to the history of
mathematics than just those parts which are relevant to astronomy.

At the other extreme, there are books that investigate episodes in the history
of mathematical astronomy in great detail — O. Pedersen’s A Survey of the
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Almagest or N. M. Swerdlow and O. Neugebauer’s Mathematical Astronomy in
Copernicus’s De revolutionibus, for example — but a huge amount of technical
astronomical knowledge is required before these works become accessible.

This state of affairs can be frustrating for mathematicians, or people inter-
ested in mathematics, who want to explore the history of astronomy but who
are not already well-versed in technical astronomy. For example, it is difficult
to find out about the mathematical problems that Kepler struggled with in his
New Astronomy without access to technical journals, and yet a proper apprecia-
tion of Kepler’s contributions to astronomy surely requires a knowledge of the
mathematical difficulties which he had to overcome. It is my aim in this book
to provide a history of theoretical astronomy that to some extent fills this gap.
The book is not simply a study of the interactions between mathematical and
astronomical developments — its main aim is to tell the story of how we have
come to understand the motions of the Sun, Moon and planets — but it does
so recognizing that the mathematics that challenged astronomers throughout
preceding millennia forms an integral part of the tale.

The first mathematical model of the Universe was that of Eudoxus in the
fourth century BC, and this provides (more or less) the starting point. Eu-
doxus’ model represented the motions of the celestial bodies in a qualitative
way, but was not satisfactory when it came to quantitative prediction. Over the
centuries, through the work of men such as Ptolemy, Ibn al-Shatir, Copernicus,
Tycho Brahe, Kepler, and Newton, models of the heavens came to reproduce the
results of observations with greater and greater accuracy. During the eighteenth
and nineteenth centuries, astronomers believed that the fundamental principles
on which Newtonian dynamics rested provided the final word on celestial me-
chanics (a phrase coined by Laplace) though mathematical progress would be
required to enable people to extract more information from Newton’s theory of
universal gravitation.

Discoveries of new celestial bodies led to new challenges, and the sophis-
tication of the mathematical theories designed to meet them increased. The
discovery of Neptune in 1846 brought the power of theoretical astronomy to
the attention of a wide audience and cemented its position as the ultimate exact
science. And yet, within 70 years, its omnipotence had been challenged suc-
cessfully — twice. First, new techniques for analysing problems in mechanics
led Poincaré to the conclusion that there was a theoretical limit to the predictive
power of the differential equations of celestial mechanics; here were the begin-
nings of ‘chaos theory’. Second, and finally as far as this book is concerned,
Einstein showed in 1915 that the whole of Newtonian mechanics is an approx-
imation valid only at speeds much less than that of light. The general theory of
relativity provided the explanation for the one planetary phenomenon that had
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refused to succumb to the power of Newtonian theory: the anomalous advance
of the perihelion of Mercury. Since 1915, theory and observation can be said
to be in agreement within the limits of observational accuracy. This provides a
suitable endpoint.

The book is intended for anyone who is interested in the history of astronomy
and who is not afraid of mathematics. Large parts of the book can be read by
someone with only a rudimentary mathematical knowledge, but there are parts
where the level of mathematics required is that taught at undergraduate level.
No prior knowledge of astronomy is required, however, and so the book will
be suitable particularly for undergraduates reading a mathematics-based degree
programme, and who are taking a course in the history of either astronomy or
mathematics. It was through teaching a course on the history of mathematics
at Loughborough University that I first saw the need for, and decided to write,
this book.

For those wishing to explore specific topics in more detail, extensive refer-
ences are provided via footnotes. These include both works of scholarship and
popular accounts. For reasons of practical necessity I have restricted myself to
sources written in English — which of course, rules out the original works of
most of the people discussed in the book — but every effort has been made not to
propagate errors and misconceptions from the secondary literature. Some will
remain, and some errors will have been committed that I cannot blame anyone
for but myself. For these I apologize in advance.

I would like to express my gratitude to colleagues and friends for their
encouragement and, in particular, to Peter Shiu for reading a preliminary draft
and making numerous helpful suggestions. Finally, I would like to thank Joanna
for her patience.
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Introduction

Basic astronomical phenomena

A great deal of human effort has been expended over the past 4000 years or so
in trying to predict and explain the motions of the Sun, Moon, planets and stars.
Since Babylonian times, this quest has relied heavily on mathematics, and the
developments in man’s understanding of the heavens have been inextricably
linked to progress in the mathematical sciences. As far as the Sun, Moon and
planets are concerned, attempts at an explanation of their motion using math-
ematical techniques began in ancient Greece and the first mathematical model
of the heavens was constructed by Eudoxus in the fourth century BC. The final
piece of the celestial jigsaw was supplied by Einstein’s theory of general rela-
tivity in the twentieth century and, since 1915, all major phenomena associated
with planetary motion have possessed theoretical explanations. This should not
be taken to imply that we know everything about the future positions of the
bodies in our Solar System. Indeed, the researches of Poincaré in the late nine-
teenth century have led us to a much clearer understanding of the limitations
of theoretical predictions. Before embarking on the fascinating story that de-
scribes the endeavours of men such as Ptolemy, Copernicus, Kepler, Newton,
and Laplace, we will begin by familiarizing ourselves with the various heavenly
phenomena that people have for so long sought to explain.

For a variety of reasons, early astronomers thought that the Earth was sta-
tionary and that the heavenly bodies moved around it. On the face of it this is an
extremely natural assumption to make, the evidence to the contrary is far from
obvious. The fact that the natural interpretation of the situation is wrong is one
of the reasons why astronomy has such an absorbing history. Progress in man’s
understanding of the nature of the Universe has not been a gradual refinement
of simple and intuitive ideas, but a struggle to replace the seemingly obvious
by, what to many, was patently absurd. Nowadays, we accept that the idea of a
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stationary Earth at the centre of the Universe is wrong and that the Earth, Sun,
planets, and stars are all in motion relative to each other, but in order to under-
stand early approaches to astronomy it is often helpful to throw away our modern
notions and to try and picture the Universe as the ancients would have done.

The most obvious of the objects visible in the sky is the Sun, and systematic
observations of its motion across the sky were made by the Babylonian and
Egyptian civilizations using a gnomon, which was simply a primitive sundial
consisting of a stick placed vertically on a horizontal surface.’ During the course
of a day both the length and direction of the gnomon’s shadow vary; when the
Sun is high in the sky the shadow is short and although the minimum length of
the shadow varies from day to day, the direction of the Sun at the time when
the shadow is shortest is always the same. For an observer in the northern
hemisphere (and we will assume throughout that the observer is in the northern
hemisphere) this direction defines due north. Each day, the Sun rises in the
eastern part of the sky, travels across the sky reaching its highest point in the
south in the middle of the day, and then sets in the western part of the sky.
However, the amount of time for which the Sun is visible and its daily path
across the sky are not constant, e.g. the points on the horizon at which the Sun
rises and sets undergo variations. Observations over a sufficient period of time
would show that these variations repeat, and that the period with which they do
so is related to the weather (in most parts of the world); in this way one is led
to the concept of a year with its seasonal changes in climate.

In Egypt, where the seasons are not particularly noticeable, this period was
recognized to be the same as that associated with the flooding of the Nile and,
hence, crucial to people’s lives. The Egyptians noticed that for part of the year
Sirius, the brightest star in the sky, was invisible as it was too close to the Sun,
but that the floods began soon after the time when the star rose in the eastern sky
just before dawn, and they measured the period between these so-called heliacal
risings at a little over 365 days. We call this period the tropical year, and it
forms the basis of our calendar. For calendrical purposes, the Egyptians used a
year of precisely 365 days and the simplicity of such a system was beneficial
in the extreme to astronomers; indeed, it was used by Copernicus as late as
the sixteenth century. The division of a day into 24 h is also of ancient origin,
though originally these were of unequal length and depended on one’s location
and the time of year in such a way that there were always 12 h of daylight and
12 h of darkness.’

' The early use of shadow sticks is described in Fermor (1997).
For the purposes of everyday life, the change to 24 equal hours did not take place until the
fourteenth century with the advent of the mechanical clock, but hours of equal length were used
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The next most obvious heavenly body is the Moon, and this is seen to undergo
not only variations in its track across the sky but also in its form, changing
within a period of about 29% days from thin crescent to circular disc (full
moon) back to thin crescent again and then disappearing for two or three nights
(new moon). These changes in form are known as the ‘phases of the Moon’ and
are associated with another characteristic length of time, known as a lunation
or synodic month, that formed the bases of many ancient calendars. When the
Moon is full, it is opposed diametrically to the Sun, and we say that the Sun
and the Moon are in opposition. When the Sun and the Moon are in the same
direction — which happens at the new moon — they are said to be in conjunction.
This same terminology is used for any pair of heavenly bodies. Oppositions and
conjunctions are known collectively as syzygies.

If observers look toward the sky on a clear night, they see a large number
of stars that appear to lie on a spherical surface with themselves at the centre;
this imaginary surface is called the celestial sphere. The stars appear to move
over the surface of this sphere but the distance between them remains constant,
and it was for this reason that many ancient astronomers regarded the celestial
sphere as a real entity with the stars attached physically to it. This physically
real celestial sphere had its centre at the centre of the Earth, but it is more
convenient to take the imaginary celestial sphere (illustrated in Figure 1.1) as
having its centre at the observer O. The point on the celestial sphere directly
above the observer is called the zenith, Z.

Although we now know that the stars are not all the same distance from
the Earth, it is not at all hard to imagine when looking at them that they are
equidistant from us, though we have no immediately simple way of determining
justhow far away they are. Ignoring the question of distance, the celestial sphere
gives us an easy way of describing the direction of a star: it is the same as the
direction of the line that points from an observer to the point on the celestial
sphere where the star appears to lie. We can then talk about the apparent
distance between two stars as the angle between the lines pointing towards
each of them.

Some careful observation will show that the stars move as if they were
attached to the celestial sphere and it was rotating about an axis that intersects
the sphere at a point in the northern sky. This point, which nowadays is close to
the star Polaris, is called the north pole, Py, of the celestial sphere and we can
easily imagine that there is a south pole, Ps, in the part of the sky invisible to us.

from ancient times in the context of scientific discussions. A division of the day into equal
temporal units was used in China from the second century BC. See Dohrn-van Rossum (1996)
for a complete history of the hour.
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Fig. 1.1. The celestial sphere.

The stars move around the north pole in an anticlockwise direction with some
stars always above the horizon (N W SE), so-called circumpolar stars (or, as
some ancient observers termed them, ‘those that know no weariness’),3 and
some dipping below the horizon as indicated by the dashed lines in Figure 1.1.
We can imagine easily that there are other stars that remain invisible below the
horizon. The circle ABC D, which lies in a plane through O midway between
the poles, is called the celestial equator. If we were at the north pole of the
Earth, then the north pole of the celestial sphere would correspond to the zenith
and all visible stars would be circumpolar, whereas if we were on the equator,
the north pole of the celestial sphere would be on the horizon and there would
not be any circumpolar stars. For a general point in the northern hemisphere,
the angle between O Z and O Py is 90° minus the latitude of the observer. The
celestial sphere completes 1 revolution in about 1 day, and this rotation is called
the ‘daily’ or diurnal motion. The Moon also participates in this daily rotation

3 . . . .
It is these circumpolar stars that are most suggestive of the spherical nature of the heavens.
Ptolemy, in AD second century stated explicitly that these stars were instrumental in leading
astronomers to the concept of a celestial sphere (PTOLEMY Almagest, Book I, 3 (see Toomer
(1984)).
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as does the Sun, though since the stars and the Sun are not seen at the same
time, this is harder to appreciate.

Provided we have an accurate means of measuring time, we can observe
that the stars actually complete a revolution about the pole in about 23 h 56 min,
so that they return to the same place at the same time in 1 year.4 For an ancient
observer, this observation was more difficult. However, by observing stars rising
above or setting below the horizon at about sunrise or sunset, one notices that
the stars are moving faster than, and therefore gradually changing their position
with respect to the Sun, returning to the same position after 1 year. If we regard
the stars as fixed on the celestial sphere, then the Sun must move relative to
the stars in the direction opposite to the diurnal motion (i.e. from west to east),
completing one circuit of the celestial sphere in a year. There are other features
of the motion of the Sun that need to be explained. For example, the points
on the horizon at which the Sun rises and sets vary from day to day, as does
the midday height of the Sun and, indeed, the length of time the Sun is above
the horizon. A great deal of careful observation led ancient astronomers to the
conclusion that the complex motion of the Sun was built up from two much
simpler motions: the first was the daily rotation of the celestial sphere and the
second was a much slower annual motion that took place on an oblique great
circle (AQCR in Figure 1.2). This circle is called the ecliptic, the reason being
that for eclipses to occur, the Moon must be on or near it, and the angle at which
it cuts the celestial equator is called the obliquity of the ecliptic, . Nowadays,
the value of ¢ is about 23° 27', but the obliquity actually decreases very slowly
with time. In 3000 BC, it was about 24° 27

In order to describe the position of a body on the celestial sphere, we
need some sort of coordinates. One possibility, introduced by Babylonian as-
tronomers, is to measure angles relative to the ecliptic. The ecliptic longitude
measures the distance around the ecliptic, whereas the ecliptic latitude mea-
sures the distance north or south of this line. Hence, by definition, the ecliptic
latitude of the Sun is 0°. A common alternative is to use a system based on the
celestial equator, and here the distance around the equator is known as the right
ascension, whereas the distance north or south of the equator is the declination.

From Figure 1.1, it can be seen that when the Sun lies on the celestial equator
the lengths of the day and night are equal (since the arcs DCB and BAD are
the same length) and, hence, the points A and C in Figure 1.2 are known as
the equinoctial points, and the times when the Sun is at these points are the
equinoxes. The time at which the Sun is at A (i.e. when it crosses the celestial

¢ Twenty-four hours divided by 365.25 (the number of days in 1 year) is just under 4 min.
5
Thurston (1994).
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Fig. 1.2. The annual motion of the Sun.

equator from south to north) is the spring or vernal equinox, whereas the Sun
is at C at the autumnal equinox. Ancient astronomers were aware of the fact
that the Sun does not move around the ecliptic at a uniform rate — the autumnal
equinox is about 186 days after the vernal equinox, but only 179 days pass
before the autumnal equinox is reached again.

The Sun is at point Q — its most northerly extreme — at the summer solstice,
and at its most southerly extreme, R, at the winter solstice. The points Q and
R are known as the solstitial points. Observations over a short period of time
suggest that the equinoctial and solstitial points remain fixed with respect to
the fixed stars, but actually they do not; the equinoctial points rotate around
the celestial equator with a period of about 26 000 years. Surprisingly, perhaps,
this phenomenon, called the ‘precession of the equinoxes’, was recognized as
early as the second century BC. The fact that the equinoxes precess means that
the time taken for the Sun to return to the same position on the ecliptic (the
tropical year) is different from the time taken to return to a fixed star. This latter
period is known as the sidereal year. The modern values for these periods
are approximately 365.242 days for the tropical year and 365.256 days for the
sidereal year. When we use the term ‘year’ without qualification we mean the
tropical year, though in most situations the difference is unimportant.
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Table 1.1. The periods of the moon.

Month Length in days
synodic 29.531
sidereal 27.322
draconitic 27.212
anomalistic 27.555

Observations of the Moon show that its monthly path round the celestial
sphere is also a great circle that is very close to the ecliptic but inclined slightly
to it. The orbit of the Moon crosses that of the Sun at two points called ‘the
nodes of the orbit” and the straight line joining these points is called the nodal
line. At one of its nodes, the Moon is moving from south of the ecliptic to
north of it, and we call this the ascending node, the other point of crossing
being the descending node. The period of the rotation of the Moon around the
celestial sphere is known as the sidereal month, which is, of course, different
from the synodic month because that measures the motion of the Moon with
respect to the Sun, which itself is moving around the ecliptic. There are two
other important periods associated with the Moon which were recognized in
ancient times. First, there is the draconitic month, which is the period between
successive ascending (or descending) nodes,” or equivalently the time it takes
for the Moon to return to the same distance from the ecliptic (i.e. to the same
ecliptic latitude) while travelling in the same direction. Second, the speed with
which the Moon moves across the sky relative to the stars is variable (varying
between about 12 and 15° per day) and the period of time it takes for the Moon
to return to the same speed is called the anomalistic month. The modern mean
values for the various periods of the Moon are shown in Table 1.1, though the
actual values for any given month may differ from these by as much as 7 h.

Perhaps the most dramatic of celestial events which are easily observable
are eclipses, and these are of two types: lunar and solar (see Figure 1.3)." In
a lunar eclipse the Earth passes between the Sun and the Moon and casts its
shadow over the Moon’s surface, whereas in a solar eclipse it is the shadow

In medieval times, the part of the Moon’s orbit south of the ecliptic was known as the ‘dragon’
(which devoured the Moon during eclipses) and from this we get the terminology ‘dragon’s
head’ for the ascending node and ‘dragon’s tail’ for the descending node. An example of this
usage can be found in Chaucer’s Treatise on the Astrolabe (1391), one of the oldest surviving
scientific works written in English. The periods between successive nodes has, over time, been
termed the dracontic, draconic and draconitic month, the words deriving from the Greek for
‘dragon’.

Eclipses can be categorized further depending on the precise arrangement of the three bodies
(see, for example, Payne-Gaposchkin (1961)).

-
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(lunar eclipse)

(solar eclipse)

Fig. 1.3. The nature of eclipses.

of Moon that passes over the Earth. Thus, a lunar eclipse takes place when the
Moon is in opposition to the Sun (i.e. when it is full) and simultaneously at
(or near) one of its nodes. Similarly, a solar eclipse occurs when the passage
of the Moon corresponds, through one of its nodes, to a conjunction with the
Sun. Now, if the nodal line of the orbit of the Moon had a fixed orientation with
respect to the stars, one of its nodes would lie directly between the Earth and
the Sun every half year. Actually, the nodal line rotates (a fact known to the
ancient Greeks) and as a result a node lies on the Earth—Sun line once every
173.3 days. A solar eclipse will occur if there is a new moon close enough to
this time. It turns out that the shadow of the Moon will touch the Earth if the
new moon appears within about 18% days either side of the alignment of a node
and, thus, there is a 37%-day eclipse season every 173 days during which a solar
eclipse may be visible.

A similar analysis applies to lunar eclipses, but since the shadow cone of
the Earth narrows as one moves further from the Sun, the full moon needs to
appear nearer to the point of alignment than the 37 % -day window that exists for
solar eclipses. As a result, lunar eclipses actually are less frequent than the solar
variety. In any one calendar year, there are between two and five solar eclipses,
but there can be no more than three lunar eclipses per year and there might not
be any. The reason solar eclipses are seen so much more rarely than lunar ones
is, of course, due to the fact that the area of the Earth covered by the shadow
of the Moon in a solar eclipse is very small, and so a particular solar eclipse is
visible from only a small part of the surface of the Earth. On the other hand, the
shadow of the Earth can block out the light of the Sun from the whole of the
surface of the Moon, and such a lunar eclipse will be visible from anywhere on
the Earth from which the Moon normally would be visible.

Eclipses of both the Sun and Moon were observed by ancient astronomers
and would no doubt have aroused great interest. Over a period of time it would
have become clear that eclipses of the Moon occur only when the Moon is full,
and that eclipses of the Sun occur only at new moon. The fact that solar eclipses
are caused by the Moon passing in front of the Sun would not have been hard to
appreciate, but the fact that eclipses of the Moon are caused by the shadow of
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Table 1.2. The zodiacal and synodic periods
of the planets.

Zodiacal period Synodic period

(years) (days)
Mercury 1 115
Venus 1 584
Mars 1.88 780
Jupiter 11.86 399
Saturn 29.46 378

the Earth passing over it requires a rather deeper understanding of the situation
and was probably not realized until much later. The reasons behind both types
of eclipse were, however, fully understood by the time of the ancient Greeks.

Ancient astronomers were also aware that five of the star-like objects in
the sky changed their position relative to the other stars. These five objects —
now named after the Roman gods Mercury, Venus, Mars, Jupiter and Saturn —
are the planets, from the Greek for ‘wanderer’. Careful observations of these
objects reveal that, like the Sun, as well as participating in the daily rotation of
the heavens, they, too, move around the celestial sphere though with differing
periods, and also that while they move predominantly in the same direction as the
Sun — from west to east — they sometimes switch back and, for a time, move from
east to west in so-called retrograde motions. The periods of retrograde motion
are linked to the motion of the Sun — the centre of the retrograde motion for
Mars, Jupiter and Saturn always occurring when the planet is in opposition to the
Sun — whereas for Mercury and Venus this phenomenon occurs at conjunction.
The planets also remain close to the ecliptic, the maximum deviation for any of
them being 8°, and thus all the wandering heavenly bodies can be found within
a strip on the celestial sphere 16° across centred on the ecliptic. This strip,
therefore, is very important, and is known as the zodiac and was divided by the
Babylonians into twelve equal parts: the signs of the zodiac. The average time
it takes for a planet to complete 1 revolution around the ecliptic is its zodiacal
period, and the average period between successive occurrences of retrograde
motion is known as the synodic period of the planet; for the five planets visible
with the naked eye these are given in Table 1.2.

The fact that the Sun, Moon and planets are nearer the Earth than the stars
may have been suggested by occultations, the temporary disappearance of
one heavenly body behind another. The most obvious example is the Moon,
which sometimes eclipses the Sun and also is easily observed to pass in front
of the planets and stars. Thus, all ancient astronomers agreed that the Moon
was the closest of the heavenly bodies. This view was, of course, supported by
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the Moon’s enormous size compared to the other planets and by the fact that
various details could be made out on its surface. However, there is no easy way
of determining how far away each celestial body is, and so ancient astronomers
took the view that their distance probably was related to the speed with which
they traversed the celestial sphere. This was consistent with the fact that the
Moon is the swiftest of the heavenly bodies.

The Sun’s journey around the ecliptic takes, by definition, 1 year, and it
was found that Mars returned to the same place among the stars on average
after about 2 years, Jupiter after 12 years and Saturn after 29% years. These
planets, being slower than the Sun, were therefore thought to be further away
and, hence, higher in the sky, and were termed the superior planets. On the
other hand, Venus and Mercury both complete 1 revolution about the Earth in
the same average time (1 year) and there was considerable disagreement about
the correct ordering of these two planets. Eventually, a consensus was reached
that they were closer to the Earth than the Sun, and they became known as the
inferior planets. The observed behaviour of the superior and the inferior planets
is different in another important way: Mercury and Venus are never seen far
from the Sun, the maximum differences in longitude being about 29 and 47°,
respectively, and so they are only ever visible near dawn or sunset, whereas the
difference in longitude between the Sun and Mars, Jupiter or Saturn can take
any value and they can be visible at any time of night.

The Sun, Moon and five planets, together with the fixed stars, were the
only heavenly bodies recognized in antiquity, and this situation did not change
until Galileo pointed a telescope at the night sky in 1609-10 and discovered
the moons of Jupiter. No further planets were discovered until the eighteenth
century, and comets were not considered as celestial bodies until the pioneering
observations of Tycho Brahe in the late sixteenth century (prior to this they were
thought of as atmospheric phenomena).

The problem for astronomers, then, was to explain the phenomena that have
been described above. In the beginning, attempts were limited to qualitative
explanation, but the models that were developed could not produce accurate
quantitative predictions for astronomical events. The quantitative problem is
much, much harder, and it exercised many of the greatest minds over a period
of more than 2000 years, from Babylonian times to the twentieth century.

Babylonian astronomy

The heavenly phenomena were of great importance to the Babylonians, as they
were perceived as omens and just about every possible astronomical event had
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some significance. For example, when it came to the retrograde motion of the
planets it was not simply the retrograde motion itself, but also where it took
place with respect to the stars, that was important:

When Mars comes out of the constellation Scorpius, turns and reenters Scorpius,
its interpretation is this: ... do not neglect your guard: the king should not go

. 8
outdoors on an evil day.

In order to improve their abilities to predict such phenomena, the
Babylonians developed a tradition of observing and recording celestial events;
examples of Babylonian astronomical observations exist which date back as
far as 1600 BC. These are not particularly accurate, but show that the practice
of observing and then recording the results has a long history in Babylonian
culture. Scribes systematically began documenting celestial phenomena (e.g.
eclipses) in about the eighth century BC, and over the next 700 or 800 years
produced a large quantity of data that would later prove invaluable to Greek
astronomers.” In order to carry out their work, astrologers needed tables of the
future positions of heavenly bodies (which we now call ‘ephemerides’) and this
desire was the driving force behind the production of such tables for over 2000
years.

The Babylonian number system was sexagesimal (base 60) and positional.10
The reason for the use of 60 is unclear, but it may well have been because
60 is divisible exactly by lots of small integers, so many calculations can be
done without the use of fractions. Nevertheless, because of the positional na-
ture of the system, the treatment of fractions was vastly superior to the methods
employed in Egypt and Greece, and as a result it was used by virtually all
Western astronomers up until the sixteenth century, when decimal fractions be-
gan to take over. The superiority of the positional system of numeration helps
to explain why quantitative astronomy reached a much greater level of sophis-
tication in Babylonia than in other contemporary civilizations. The influence
of the sexagesimal number system is still apparent in our measurement of time
and angles, with 1 h being divided into 60 min, and so on. The Babylonians are

® This is just one of many such examples described in Swerdlow (1998a).
The earliest Babylonian observations that the later Greek astronomers were able to use were
made during the reign of Nabonassar (747-33 BC) and thus this period became a key reference
point in the Greek system of reckoning time. Babylonian astronomers are often referred to as
Chaldeans, a tribe from the southern part of the area known as Babylonia that established a
new dynasty in 625 BC. Our knowledge of Babylonian astronomy was transformed during the
twentieth century with the deciphering of hundreds of astronomical documents. The way this
new information was absorbed into mainstream history of science is described in Rochberg
(2002).
We will follow standard modern practice of writing sexagesimal numbers with a semicolon
representing the sexagesimal point. Thus, 1, 24; 20 = 60 4 24 + % = 84%.
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also responsible for dividing the circle up into 360 equal parts, which we call
‘degrees’, though this would not appear to have been a direct consequence of
their sexagesimal system, but seems to have been due to the length of the year
being about 365 days, and so in 1 day the Sun moves about 1° with respect to
the stars.

The Babylonians began to turn their observational records into a mathemat-
ical theory around 500 BC. It was also around this time that they created the
concept of the zodiac, dividing the strip straddling the ecliptic into twelve equal
subdivisions of 30° each, so as to aid computations. From their data they real-
ized that there were fixed periods of time associated with many astronomical
events and, since knowledge of these events had great benefits in terms of prog-
nostication, they spent considerable time and effort determining these periods
accurately. Typically, they would develop relationships in which m intervals of
one type were equated with n different intervals. For example, they discovered
the approximate equivalence between 19 years and 235 synodic months; a re-
lationship that formed the basis of their luni-solar calendar and is now known
as the ‘Metonic cycle’ after the Athenian who tried unsuccessfully to incor-
porate it into the Greek calendar (since 235 = 19 x 12 4 7, years consisted
of 12 months, with 7 intercalary months every 19 years). Another example is
the Venus cycle in which the planet completes five synodic periods in 8 years
(8 x 365 =5 x 584).

The Babylonians developed sophisticated mathematical techniques that en-
abled them to develop an accurate predictive astronomy.ll Most Babylonian as-
tronomy was concerned with the motion of the Moon (e.g. determining when the
new moon would first become visible, since this was the basis of their calendar),
but they also tabulated planetary oppositions and conjunctions. Our knowledge
of their astronomy comes largely from ephemerides, which list the positions
of the Moon or planets over a number of years at regularly spaced intervals.
The values listed are the results of calculations rather than of observations, so
they reveal the underlying mathematical techniques that the Babylonians used
to model the heavenly phenomena.

Fundamental to the phenomena the Babylonians were interested in was the
motion of the Sun, and from their ephemerides it has been possible to deduce
how they modelled the Sun’s non-uniform motion. Interestingly, there were
two methods, both of which were in use during the whole period for which
ephemerides have been found (the last three centuries BC). The simpler ver-
sion, known as ‘System A’, implied a motion for the Sun of 30° each mean

" The summary given here is based on the excellent introduction to Babylonian astronomy given
in Neugebauer (1969).
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Fig. 1.4. Variations in the solar motion in Babylonian astronomy.

synodic month for just over half the year and then 28; 7, 30° for the remainder.
Calculations reveal that this system corresponds to the relation

1 year = 12; 22, 8 synodic months.

In ‘System B’, rather than have the Sun’s motion change abruptly at two points
during the year, it was made to vary continuously, oscillating between the maxi-
mum and minimum values of 30; 1, 59° and 28; 10, 39, 40° per mean synodic
month. In order to represent this, the Babylonians used alternate increasing and
decreasing arithmetic progressions that are best illustrated as a zigzag function.
The relation between the length of the year and that of the synodic month was
the same as in System A. Both systems are illustrated in Figure 1.4, in which
the numbers denote the ecliptic longitude of the Sun measured from the vernal
equinox. Ephemerides also exist that concern the daily motion of the Moon in
which its speed is treated in a similar way by means of a zigzag function.

The planetary phenomena are more complex, but the mathematical tech-
niques with which the Babylonians attempted to model them were essentially
the same as the ones they used to represent the Sun’s motion.” For the case of a
superior planet, there were five characteristic phenomena that concerned Baby-
lonian astronomers, and these are shown schematically in Figure 1.5. When the
planet is in conjunction, it cannot be seen because of the Sun’s glare but as it
moves around the ecliptic relative to the Sun there comes a point, I, where it
first becomes visible just before dawn (its heliacal rising). Similarly, the planet

" Detailed descriptions of the technicalities of Babylonian astronomy can be found in, for
example, Aaboe (1958, 1964, 1980), Swerdlow (1998a, 1999), Steele (2000, 2003).
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ecliptic

Fig. 1.5. The characteristic phenomena for a superior planet in Babylonian astronomy.

eventually will disappear as it approaches conjunction again, and its last ap-
pearance just after sunset (its heliacal setting) is labelled €2. In-between, the
planet will undergo a period of retrograde motion around its opposition, ®, and
the two positions at which its motion along the ecliptic is stationary, & and
W, make up the points of interest. The main problem of Babylonian planetary
astronomy was, given the longitude of one of these phenomena for a particular
planet, to predict the longitude of the next occurrence of the same phenomenon.
It was these differences in longitude that the Babylonians attempted to model
with their zigzag (System B) or step (System A) functions.

As well as developing fairly sophisticated techniques with which to model
the periodic phenomena they observed in the heavens, the Babylonians achieved
a high level of skill in numerical techniques. What they do not appear to have
done, however, was seek to explain what went on in the heavens in terms of a
geometrical or physical model — their approach was entirely arithmetical. The
desire to construct a model of the Universe, a cosmology, which corresponds
to the observed celestial phenomena has its origins in the works of ancient
Greek philosophers. However without the accurate quantitative astronomy that
the Babylonians created, and the vast amount of data they catalogued, Greek
astronomers would not have been able to achieve what they did.

Early Greek astronomy

Early cosmologies were based heavily on man’s earthly experiences and owed
little to accurate astronomical observation. They fulfilled a well-documented
psychological need, providing a stage for the drama of daily life, for the ac-
tions of the gods and also supplying meaning to man’s existence. Before the
ancient Greek civilization, cosmologies were constructed that made no attempt
to explain any but the most rudimentary of astronomical phenomena. For ex-
ample, the Egyptians explained the motion of the Sun by having the Sun god
Ra take a daily trip through the air and then each night make a passage through
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the water. The Moon, on the other hand, was attacked on the fifteenth day
of each month by a sow and after 2 weeks of agony the Moon died and was
reborn.

Gradually, as the Greek civilization progressed, cosmologies became more
sophisticated, and the idea that the way to find out about the nature of the Uni-
verse is through accurate astronomical observation, now a well-established tenet
of Western thought, developed. One of the earliest examples we have showing
Greek interest in the heavens comes from the writings of Homer in which the
Earth is a flat circular disc surrounded by the Ocean river and covered by the
vault of heaven. The Homeric epics show that in the eighth century BC the Greek
understanding of the natural world was very primitive, and their awareness of
astronomical phenomena was considerably less than that of their Babylonian
contemporaries. Further evidence of early Greek astronomical knowledge can
be obtained from Hesiod’s poem ‘Works and Days’, written about a century af-
ter Homer’s time, which among other things, contains what might be described
as an agricultural calendar. Hesiod described how the seasons are related to the
heliacal risings and settings of certain stars and, in contrast to Homer, connected
astronomical events to the lives of ordinary people.

Up until about 300 BC, Greek astronomy was almost entirely qualitative.
Indeed, there is no evidence that the accurate prediction of heavenly phenomena
was even thought of as a desirable goal. This situation changed when the Greeks
came into contact with the quantitative methods of Babylonian astronomers
during the expansion of their empire under Alexander the Great. Before then,
however, celestial phenomena were the subject of a great deal of philosophical
debate that provided the basis on which later astronomers could build. Four
major schools of philosophical thought existed during the 300 or so years prior
to the construction of the first mathematical model of the Universe by Eudoxus. "
There were the Ionians, a group founded by Thales of Miletus (in Asia Minor,
modern-day Turkey) in about 600 BC. During the sixth century BC the region
of Asia Minor went through a considerable upheaval due to the expansion of
the Persian empire and many philosophers travelled to other parts of the Greek
empire. One member of the Ionian School, Xenophanes of Colophon, migrated
to southern Italy and eventually settled in Elea, which became an important
philosophical centre. Perhaps the most famous of the early Greek philosophical
schools was that set up by Pythagoras (who is said to have been taught by
Thales), again in southern Italy, and finally there was the celebrated school
centred around Plato’s Academy in Athens. It should always be borne in mind

" For a modern introduction to ancient Greek philosophy, see Kenny (1998).
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that it is difficult to be certain about the specific theories espoused by these
early thinkers, since most of our knowledge comes from remarks of later (and
not always reliable) authors.

The Ionian philosophers began the process of determining the nature of
things but did not progress very far towards a rational description of the
Universe. We know very little about the people who made up this School and
none of their writings have survived. What little we do know is due to Greek
historians and commentators. As far as astronomy was concerned, the philoso-
phers of the Ionian School thought the Earth was flat, and they had a very poor
understanding of the nature of the Sun and Moon.

According to Aristotle, the founder of Ionian natural philosophy was Thales,
whose ideas (cultivated during travels around Egypt, the Mediterranean and
Near East) were built around the fundamental belief that water is the essence of
all things. The significance of this is the suggestion that there is an underlying
unity to physical phenomena and, hence, that nature is not quite as haphazard
as our senses would have us believe. In terms of the structure of the Universe,
however, Thales’ ideas were about as primitive as those found in Homer. Later
authors have ascribed knowledge of the sphericity of the Earth and of the causes
of eclipses to him, though it is extremely doubtful that Thales actually possessed
this knowledge. He is also credited with predicting a solar eclipse in 585 BC
though this is probably false also. " The sayings which are attributed to him show
us that over 2500 years ago Greek intellectuals were attempting to understand
concepts such as space and time:

Of all things that are, the most ancient is God, for he is uncreated; the most
beautiful is the universe, for it is God’s workmanship; the greatest is Space, for it
contains everything; the swiftest is Mind, for it speeds everywhere; the strongest is
necessity, for it masters all; and the wisest Time, for it brings everything to light.]5

Thales also holds a significant place in the history of mathematics. He is
reputed to have been the first person to prove geometrical theorems and a
number of such proofs are attributed to him, though their nature is unclear.
Certainly, it is true that the use of logical proofs in mathematics was developed
over the three centuries before Euclid wrote the Elements in about 300 BC, and
that later Greek writers credited Thales with inventing this deductive method,
but the precise nature of Thales’ contribution is uncertain.

Perhaps the most important of the Ionian philosophers was Anaximander,
a pupil of Thales. Almost all we know of his doctrines comes ultimately from
Theophrastus’ Physical Opinions. In Anaximander’s system, the essence of all

" See N eugebauer (1969), though an explanation of how Thales might have achieved this feat is
s given by Hartner (1969). See also Aaboe (1972).
" Quoted from Heath (1932).
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things was not water or any other physical quality, but the infinite, and there are
similarities between Anaximander’s ‘infinite medium’ and the concept of the
ether, that played a significant role in science right up to the twentieth century.m

He described the Sun, Moon and stars as hollow wheels full of fire, each of
which had a small hole in it through which the fire was visible. These narrow
openings could close, thus accounting for phenomena such as eclipses or the
phases of the Moon. The Earth, about which the wheels rotate, was a flat disc
that he thought of as the top surface of a cylinder, suspended freely in space, the
height of which was for some reason taken to be one-third of the diameter of
the disc.” Anaximander also speculated on the sizes and distances of the Sun
and Moon, though with no apparent basis for his conjectures:

the sun is a circle twenty-eight times the size of the earth; it is like a chariot-wheel,
the rim of which is hollow and full of fire, and lets the fire shine out at a certain
point in it through an opening like the nozzle of a pair of bellows: such is the sun.”

The significance of Anaximander’s ideas lies much less in his conclusions
than in the questions he was trying to answer: how big are the stars?, how far
away are they? Perhaps most significant of all, in his cosmology Anaximander
replaced the actions of gods with mechanisms familiar to those on Earth.

Anaximander’s ideas were extended by Anaximenes, who was about 20
or 30 years younger than Anaximander, though his cosmology remained very
primitive. Perhaps wishing to make philosophy more tangible, Anaximenes
made air the essence of things:

Anaximenes of Miletus, son of Eurystratus, who had been an associate of
Anaximander, said, like him, that the underlying substance was one and infinite. He
did not, however, say it was indeterminate, like Anaximander, but determinate; for
he said it was air.”

Anaximenes, like Thales before him, believed that all things were alive and
that, just as air sustains human life, a different form of air sustains the life of all
things in the Universe. He believed that the flat disc of the Earth was carried by
the air, as were the flat discs of the Sun and Moon, while the stars were fixed

' Anaximander used the Greek word apeiron and his meaning was somewhat ambiguous; see
Toulmin and Goodfield (1965), p. 66. Bochner (1966) describes apeiron as ‘some kind of stuff
(perhaps so tenuous as to be little more than “spatiality”’) of which the universe was composed’.
According to Heath (1932), p. xxiii, Anaximander said that the wheels of the Sun and the
Moon ‘lie obliquely’, indicating that he was in some sense aware of the ecliptic and its
obliquity to the celestial equator. However, Eudemus, in his lost History of Mathematics
written in the fourth century BC, attributes this discovery to Oenopides in the fifth century BC
(Heath (1913), Chapter XIV). There is no evidence that Oenopides made any measurements of
the obliquity, but he did calculate the length of the year as 365 % days.

AETIUS De placitis, Book II, Volume 20, 1. Translation from Heath (1932).
SiMPLICIUS Physics. Translation from Heath (1932).
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to the crystalline celestial vault. The heat of the Sun came from the speed of its
motion, the stars providing no heat due to their great distance.

The Ionian philosophers asked many interesting questions, most importantly:
what is the nature of things?, what is the Sun?, what is the Earth? While their
attempts at answers may seem slightly comical, their curiosity was followed
up by the greatest minds of antiquity, with impressive results. Modern science
grew out of the pioneering spirit of people such as Thales, Anaximander, and
Anaximenes.

The most important of the Eleatic philosophers was Parmenides, who was
probably a pupil of Xenophanes, who left Ionia for southern Italy in 545 BC,
during the time of the Persian conquest of Asia Minor. Xenophanes’ most
profound thoughts concerned the philosophy of religion, and he believed that
certainty of knowledge was unattainable, but he also had some interesting, but
still very primitive, ideas about the nature of heavenly bodies. He wrote that
the Sun was born again each time it rose and that eclipses occurred due to the
light of the Sun being put out. He also believed that the Moon shone by its own
light. In Xenophanes’ philosophy, the basic element was not water or air, but
earth, and he claimed that the world was evolved from a mixture of earth and
water and that the earth gradually would be dissolved again by moisture. This
process would then repeat in cycles.

Aristotle’s pupil Theophrastus credited Parmenides with the significant dis-
covery that the Earth is spherical, but others credit the Pythagoreans with this
observation.

Further we are told that Pythagoras was the first to call the heaven the universe,
and the earth spherical, though according to Theophrastus it was Parmenides, and
according to Zeno it was Hesiod.”

It is, of course, not unlikely that the idea of a spherical Earth occurred
independently to a number of people, observant Greek navigators, for example.
Parmenides conceived of a Universe consisting of a number of concentric layers
centred on the spherical Earth. Here we see for the first time the idea of a system
of geocentric spheres that was to play such an important role in the development
of future astronomical theories.

The Ionian and Eleatic thinkers represent the origins of Western philoso-
phy and, although their thoughts on the nature of the Cosmos helped stimu-
late debate, their direct influence on the history of astronomy was slight. The
Pythagoreans, on the other hand, had a much more direct bearing on future
astronomical thought. Pythagoras — a mystical figure who was born in the first

0 D10GENES LAERTIUS Lives of Philosophers, Book VIII, 48. Translation from Heath (1932).
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half of the sixth century BC —left Asia Minor and founded a School in southern
Italy which over a period of about 200 years produced a wealth of influential
ideas in astronomy and mathematics. Almost nothing is known of Pythagoras
himself and, since the group he founded was very secretive, much of their out-
put is attributed simply to the Pythagoreans as a whole rather than to any one
individual. According to Aristotle:

... those who are called Pythagoreans, taking up mathematical things, were first to
promote these, and having been reared on them, they supposed that the sources of
. 21
them were the sources of all things.

Thus, it was mathematics that held the key to understanding the Universe.
To the Pythagoreans, mathematics could be broken down into four distinct
branches, which in the Middle Ages became known as the quadrivium: arith-
metic, geometry, music and astronomy. Arithmetic and geometry represent pure
mathematics, and music and astronomy are applied mathematics, musical har-
mony being an application of arithmetic while astronomy is an application
of geometry. Like the earlier Ionian philosophers, the Pythagoreans sought to
understand the essence of things, but they found their answer in numbers (pos-
itive integers). To them, numbers were the basis of all physical phenomena.
The Pythagoreans discovered that the notes obtained by plucking two strings
sounded harmonious if the lengths of the strings were in ratios of simple whole
numbers. For example, a string twice the length produces a note an octave
higher, while if the ratio is 3 : 2 we get a fifth.

We learn from Aristotle how the notions of harmony and number were also
applied to the study of the heavens:

... they assumed that the elements of numbers were the elements of all things, and
that the whole heaven was a harmony and a number. And as many things among
numbers and harmonies as had analogies to the attributes and parts of the heavens
and to the whole cosmic array, they collected and fit together.22

Ratios of whole numbers could be found among the motions of the heavenly
bodies and so the Pythagoreans believed that they emitted harmonious sounds —
this is the origin of the phrase ‘harmony of the spheres’. The idea that a mathe-
matical structure underlies the Universe originated with the Pythagoreans, and
has been extremely influential ever since. It represents one of the cornerstones
of modern science.

In terms of astronomical phenomena, the Pythagorean School is generally
credited with knowledge of the sphericity of the Earth, and also with some of

2; ARISTOTLE Metaphysics, Book AS, 985b. Translation from Aristotle (1999).
ARISTOTLE Metaphysics, Book AS, 986a. Translation from Aristotle (1999).



20 Introduction

the consequences of this, e.g. the existence of regions of the Earth’s surface
with days and nights each lasting half a year. As we have mentioned, most
discoveries of the Pythagoreans are not attributed to any one person, but in the
field of astronomy one particular idea has come down to us with the name of
its originator attached. Philolaus of Tarentum developed a doctrine in which
the centre of the Universe is a fire called Hestia — the goddess of the sacred
fireplace of homes and public buildings. The spherical Earth, like the other
planets, described a circle about this fire with the uninhabited side always
turned toward it, completing 1 revolution each day. Outside the Earth were the
spheres of the Moon, Sun, Venus, Mercury, Mars, Jupiter, Saturn and the fixed
stars. He thought of the Sun as a transparent globe receiving its light and heat
from the central fire and from the outside of the heavens. To balance his system
he invented a counter-Earth which is always positioned on the opposite side of
the central fire, bringing the total number of spheres of heavenly bodies to the
sacred number ten. Philolaus’ hypothesis had to be abandoned when travellers
expanded the horizons of the known world beyond Gibraltar in the west and to
India in the east, but still saw no signs of the central fire or counter-Earth.

The ideas that the Earth was not the centre of the Universe and that it was
in continuous motion were very bold ones, contrary to all prevailing views of
the time and, indeed, for the next 2000 years. It would appear that these views
received little support from anyone outside the Pythagorean brotherhood. On
the other hand, the idea that the universe was made up of bodies moving in
uniform circular motions around a fixed centre was to dominate astronomical
thought until the work of Kepler in the seventeenth century. In AD first century
Geminus wrote:

It is presupposed in all astronomy that the sun, the moon, and the five planets move
in circular orbits with uniform speed in a direction opposite to that of the universe.
For the Pythagoreans, who were the first to apply themselves to investigations of
this kind, supposed the motions of the sun, the moon and the five planets to be
circular and uniform ... For which reason, they put forward the question as to how
the phenomena might be explained by means of circular and uniform motions.”

After the defeat of the Persians in 479 BC, Athens became an extremely
wealthy city, attracting a number of intellectuals. One of the first to move
there, and to bring with him the knowledge of Ionian natural philosophy, was
Anaxagoras of Clazomenae, who became a friend of the city’s ruler Pericles,

® Quoted from Goldstein and Bowen (1983). In older books, and also in the Dictionary of
Scientific Biography, Geminus is said to have lived in the first century BC, but this is now
thought to be an error caused by a confusion between ancient calendars (see Neugebauer
(1975), pp. 579-81).
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and devoted his life to investigations of the heavens. He proclaimed Mind as
the moving principle in the Universe. Many people before him had speculated
on the origin of the light from the Moon, but Anaxagoras was the first to state
clearly that the cause was the reflection of light from the Sun, which he thought
of as a vast mass of incandescent metal, and he understood that lunar eclipses
occur when the Earth blocks the illumination of the Sun. He was the first to think
of the seven wandering heavenly bodies in the order Sun, Moon, followed by the
five other planets, an arrangement adopted by a number of later astronomers.

When Pericles’ popularity began to dwindle, Anaxagoras, his protégé, be-
came vulnerable and his speculations about the sizes of the Sun and Moon (that
the Moon was as large as the Peloponnese — an area of mainland Greece — and
the Sun was larger!), and those on the causes of Earthly phenomena and the
nature of the heavens (he maintained that they were of the same general nature),
led to him being convicted of impiety. He died in exile.

During the fourth century BC a number of centres for advanced learning were
set up in and around Athens, by far the most influential being the Academy set
up by Plato, who was a pupil of the philosopher Socrates. While not a math-
ematician himself, Plato was influenced strongly by Pythagorean doctrines.
He believed that abstract mathematical concepts had a real, independent, exis-
tence, and that true knowledge could be obtained only through study of these
so-called Platonic forms. The natural world was to be understood via unchang-
ing mathematical laws, untarnished by the imperfections of our senses. His
Academy became a major centre for the study of mathematics and philosophy;
almost all the noteworthy mathematical achievements of the fourth century
BC are due to his friends and pupils. After 300 BC, the seat of mathematical
learning shifted to Alexandria, but the Academy remained pre-eminent in phi-
losophy until finally it was closed in AD 529 as a result of its support for pagan
learning.

Much of what we know about Plato’s teaching comes from a series of works
in the form of dialogues between Socrates and various historical and fictitious
people. As far as astronomy is concerned, two dialogues are particularly im-
portant: the Republic and the Timaeus. We can gauge some of Plato’s opinions
about astronomy from the following passage in the Republic where Socrates
says:

Thus we must pursue astronomy in the same way as geometry, dealing with its
fundamental questions. But what is seen in the Heavens must be ignored if we truly
want to have our share in astronomy . .. Although celestial phenomena must be
regarded as the most beautiful and perfect of that which exists in the visible world
(since they are formed of something visible), we must, nevertheless, consider them
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as far inferior to the true, that is to the motions . . . really existing behind them. This
can be seen by reason and thought, but not perceived with the eyes.'4

Plato’s ideas on the structure of the Universe are found in his cosmologi-
cal myth, the Timaeus, Timaeus being the main character in the dialogue and
through whom Plato expresses Pythagorean ideas. In Plato’s universe, the Earth
is fixed at the centre and around it are the spheres of the Moon, Sun, Venus,
Mercury, Mars, Jupiter, Saturn and the fixed stars.” Plato’s model explained
only the crudest of observed phenomena, but it laid the foundations for the
construction of the first mathematical model of the Universe by Plato’s collab-
orator, Eudoxus. The cosmology that Plato described in the Timaeus had a great
influence on Western thought in the Middle Ages, in part because this was the
only one of his works that was available in Latin before the twelfth century.

In the Timaeus, Plato described his teachings on the creation of the Universe
and the composition of nature. Like most of the physicists of his time, he
followed the Sicilian philosopher Empedocles and distinguished four elements
of matter: fire, earth, water, and air. The idea that all things are made from
these four elements was a synthesis of the various views of the early Ionian
philosophers, and may well have been derived from a natural misinterpretation
of the action of fire. When something burns, it appears to go from a complex
state to a simpler one; thus, it is resolved into its constituent parts. When green
wood is burned, for example, the fire clearly is visible, the smoke disappears
into air, water boils off from the ends and the ashes clearly are the nature of
earth.”’

A member of Plato’s Academy who made considerable progress in mathe-
matics and who, indirectly, influenced astronomy, was Theaetetus; the Platonic
dialogue bearing his name was a commemorative tribute by Plato to his friend.
Among other things, Theaetetus is credited with the original constructions of
the octahedron and icosahedron, two of the regular, or Platonic, solids (polyhe-
dra which have the property that all the faces and all the vertices are identical).
The other three (the tetrahedron, cube and dodecahedron) were discovered by
the Pythagoreans.27

One significant fact about the regular solids that led both Plato and, later,
Kepler to develop a physical theory around them, is that there are only five

i: Quoted from Pedersen (1993).
" Detailed descriptions of Plato’s cosmic scheme can be found in, for example, Knorr (1990),
2 Pecker (2001), pp. 55-70.
; This example is taken from Dampier (1965), p. 21.
See Waterhouse (1972), in which the historical problems associated with tracing the early
history of these shapes are discussed in some detail.
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Fig. 1.6. The five Platonic solids.

of them (illustrated in Figure 1.6). This is easy to prove.28 We use the fact
that the sum of the interior angles of the faces which meet at the vertex of a
regular polyhedron must be less than 360°. This condition is fulfilled only by
three, four, or five equilateral triangles (since the interior angles of an equilateral
triangle are 60° and 6 x 60 = 360), corresponding to a tetrahedron, octahedron
and icosahedron, respectively, three squares (the interior angles of a square are
90° and 4 x 90 = 360), corresponding to a cube, and three pentagons (the
interior angles of a pentagon are 108° and 4 x 108 > 360), corresponding to
a dodecahedron. Three hexagons is already too many (the interior angles of a
hexagon are 120° and 3 x 120 = 360).

Plato was searching constantly for a parallel between the hierarchy of mate-
rial things and that of mathematical objects, and this led him to consider these
solids. The fact that there are only five of them (unlike the regular polygons of
which there is an infinite number) made them special. Fire, on account of the
shape of a flame, was compared with the tetrahedron, and water, the bulkiest
of the elements, corresponded to the icosahedron. Air, having an intermediate
density, corresponded to the octahedron, which has a number of triangular faces
lying between those of the tetrahedron and icosahedron. Earth was likened to
a cube since it is the most immobile of bodies and should be represented by
the most stable figure. What about the dodecahedron? Plato got round this by
saying that the god had used it for the whole Universe, a statement that did
not satisfy many of Plato’s disciples; later the dodecahedron became associated
with the ether.

As will become evident, many of the ideas about the Universe promoted by
people who were the product of Plato’s Academy were extremely influential.

* The proof given here (which is probably due to Theaetetus) is given in the concluding
proposition of Euclid’s Elements, written in about 300 BC.
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But some, which in retrospect we can see to have been correct, were not. One of
Plato’s pupils, Heraclides, assumed a rotating Earth at the centre of the Universe
in order to account for the daily motion of the heavens.

Heraclides of Pontus and Ecphantus the Pythagorean move the earth, not however

in the sense of translation, but in the sense of rotation, like a wheel fixed on an axis,
. 29

from west to east, about its own centre.

Here, we have an example of a modern view, but one that attracted few
followers among Heraclides’ contemporaries and which was not considered
seriously again until the fourteenth century. This may at first seem strange, but,
as with other similar examples, the perceived advantages of Heraclides’ theory
were far outweighed by the obvious disadvantage of requiring the Earth to spin
round, something that is quite alien to everyday experience.30

* ABT1US De placitis Book 111, Volume 13, 3. Translation from Heath (1932). Virtually nothing
is known about Ecphantus. Since all his known opinions correspond to those of Heraclides,
Heath (1913) thinks it likely that he was in fact a character used by Heraclides in dialogues.

© Itis often stated that Heraclides believed Mercury and Venus rotated around the Sun rather
than the Earth, but Neugebauer (1972) puts this down to a mistranslation of a sentence from
Chalcidius’ commentary on Plato’s Timaeus.
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Spheres and circles

Eudoxus’ system of concentric spheres

The Babylonians were concerned with predicting the time at which a particular
phenomenon (e.g. a planetary opposition) would occur, since it was the date that
was ominous. Their astronomy was thus concerned with the analysis of discrete
processes. On the other hand, as we shall see, the Greeks in their astronomy
focused on predicting where a celestial body would be at a given time, and they
were thus concerned with modelling a continuous process, which naturally leads
to the use of geometrical methods. The first person to produce a geometrical
model of celestial motions was Eudoxus, who was born in Cnidus on the western
coast of Asia Minor in about 400 BC. According to Diogenes Laértius’ Lives of
Philosophers (written in AD third century) he was taught geometry by Archytas
of Tarentum, one of the leading Pythagorean philosophers, and studied with
Plato, who was about 30 years older than him. None of Eudoxus’ works have
survived. Most of the information we have about his system of concentric
spheres comes from a brief contemporary account in Aristotle’s Metaphysics
and a more substantial description due to Aristotle’s influential commentator
Simplicius (AD sixth century).]

! Simplicius based his work on that of the philosopher Sosigenes (AD second century — not to be
confused with the Sosigenes who helped Julius Caesar reform the calendar in the first
century BC), and ultimately on the lost history of astronomy by Eudemus, who lived only a
generation after Eudoxus. It is important to recognize that Simplicius was writing 900 years
after the event and he may well have been putting his own interpretation on Eudoxus’ work. By
itself, the information supplied by Aristotle and Simplicius does not provide a clear picture of
Eudoxus’ model, but in a classic paper in 1877, the Italian Giovanni Schiaparelli produced a
reconstruction of the Eudoxan system which has remained the accepted version ever since.
Recently, however, Yavetz (1998, 2001) has argued that Schiaparelli’s interpretation is not the
only one that can be put on the original sources which is consistent with what we know about
Greek astronomy of the time, and that there is no reason to believe one rather than the other.
Here we will stick to the standard interpretation.

25
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Eudoxus had a considerable influence in many areas of mathematics. In fact,
he was the inspiration behind two of the most profound mathematical advances
of the fourth century BC. The first of these was the theory of proportion, which
formed the basis of much of Euclid’s Elements (see p. 36), and the second was
the method of exhaustion, which was used extensively in the same work and
represents the beginnings of the subject now known as the ‘integral calculus’.
Both of these contributions were of fundamental significance for the develop-
ment of mathematics, but it would appear that, as far as other scholars from
antiquity were concerned, his main claims to fame were his astronomical dis-
coveries,” one of which was an accurate estimate for the length of the tropical
year, namely 365 days 6 h.

Eudoxus’ theory based on concentric spheres marks the beginning of a long
development in Greek mathematical astronomy, culminating in the work of
Ptolemy about 500 years later.” Usually, it is claimed that Eudoxus’ theory,
described in his treatise On Speeds, was a response to a challenge of Plato.
Simplicius tells us that:

Eudoxus of Cnidus was the first of the Greeks to concern himself with hypotheses
of this sort, Plato having . . . set it as a problem to all earnest students of this subject
to find what are the uniform and ordered movements by the assumption of which
the phenomena in relation to the movements of the planets can be saved.’

In other words, what uniform circular motions could be used to represent the
motions of the planets? Quite how much of the impetus for a geometrical theory
of the heavens was due to Plato is open to question, however.”

The discovery of the spherical nature of the Earth, together with Pythagorean
ideas about uniform circular motions, may well have suggested to Eudoxus that
the motion of the stars and planets could be modelled by means of a system
of concentric spheres with the Earth at their common centre. He supposed that
each of the Sun, Moon and planets occupied its own sphere which was attached
via its poles to a larger sphere that rotated about other poles. Third and fourth
spheres could be added, each rotating at different rates and about different axes,
according to mathematical and observational needs. Apart from the sphere of
the fixed stars, Eudoxus used three spheres each for the Sun and Moon and four
spheres for each of the planets, making twenty-seven in all. In each case, one

? Lasserre (1964), p. 124.

? It has been claimed (Landels (1983)) that Eudoxus’ model of the Universe represents the first
ever example of the technique of mathematical modelling, but while the most obvious
mathematical phenomena are modelled quantitatively by Eudoxus’ theory, the more subtle
effects are only reproduced qualitatively, if at all.

s SimpLICIUS on De caelo. Translation from Heath (1932).

See, for example, Goldstein (1980), (1983), Knorr (1990).
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Fig. 2.1. Eudoxus’ scheme for the motion of the Moon, according to Simplicius.

of the spheres performed exactly the same function: it rotated once every 24 h
and accounted for the daily rotation of the heavens. Thus, the motions of the
Sun, Moon and planets with respect to the fixed stars actually were modelled
using only nineteen uniform circular motions. It is not clear whether Eudoxus
thought of the spheres as being real physical entities, or whether he regarded
them as purely mathematical constructions. Indeed, he may not have thought
that the distinction was signiﬁcant.6

In Eudoxus’ theory for the Moon (see Figure 2.1, in which A B represents
the celestial equator and C D the ecliptic), the outermost of the three spheres
completes 1 revolution from east to west in 1 day, thus accounting for the
diurnal rotation of the Moon. In order to account for the motion of the Moon
around the ecliptic, Eudoxus introduced a second sphere attached to the first
through an axis passing through the poles of the ecliptic and rotating from west
to east. Eudoxus also knew that the Moon did not follow exactly the ecliptic,
but deviated a little above and below it, and accounted for this by including a

¢ Wright (1973) has argued that the very nature of the system makes it probable that Eudoxus did
think of his spheres as having a physical reality.
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third sphere, the axis of rotation of which makes a small angle with that of the
second sphere.

It is not known what speeds Eudoxus chose for his second and third spheres,
or what inclination he gave the third sphere relative to the second; Simplicius
merely states that the rotation of the third sphere was slow. It seems likely that
Eudoxus would have noted that the Moon’s variation in latitude amounted to
something like &= 5° and so would have used a value close to 5° for the inclination
of the third sphere to the second. For the inclination of the second sphere to
the first he would have used his value for the obliquity of the ecliptic and there
is reason to believe that this was 1/15 of a circle, or 24°. This is the angle
subtended at the centre by a regular fifteen-sided polygon, the construction
of which is given in Euclid’s Elements, Book IV, Proposition 16, and which,
according to Proclus, was included because of its usefulness in astronomy.7

Eudoxus’ theory for the Sun was very similar to his lunar theory. The axis
of the innermost sphere was inclined at a very small angle to the second, thus
giving the Sun a deviation from the ecliptic. The ecliptic seems to have been
defined vaguely as some great circle passing through the zodiac rather than as
the path of the Sun, the definition in terms of the motion of the Sun not being
formulated until the second century BC by Hipparchus. The solar theory implied
that the Sun moves with constant speed relative to the fixed stars, from which
it follows that the seasons are all of equal length — a statement known to be
false, since in 432 BC two astronomers from Athens — Meton and Euctemon —
measured the times between summer solstice and autumn equinox, autumn
equinox and winter solstice, winter solstice and spring equinox, and spring
equinox and summer solstice, as 90, 90, 92 and 93 days, respectively. Eudoxus’
theory also assumed that the heavenly bodies were each at a fixed distance
from the Earth, and so was incapable of modelling the observed changes in the
apparent diameters of the Sun and Moon. This is most significant for the Moon,

7 As to the speeds of the second and third spheres, there is a certain amount of disagreement.
According to Dicks (1970), the period of rotation of the second sphere would have been the
synodic month and the slow rotation of the third sphere in the opposite direction would not have
affected the speed of the Moon very much, but would have accounted for the Moon’s movement
in latitude and the fact that its greatest deviations occur at points which shift steadily
westwards. However, many have taken the view that Simplicius got it wrong and that it was the
second sphere that rotated slowly, with a period of over 18 years, and the innermost sphere
rotated once in a period of a little over 27 days. This provides a much more accurate
representation of the Moon’s deviations in latitude and also models the so-called Saros period
of 223 synodic months (= 18 years), which was used by the Babylonians to investigate the
periodic recurrence of various lunar phenomena, including eclipses. This view, which
originated in the nineteenth century and has been repeated many times since, is, according to
Dicks, an example of a misleading interpretation of early astronomical thought by attributing to
it a sophistication inconsistent with contemporary knowledge. The fact that Eudoxus’ system of
concentric spheres is poor quantitatively in virtually all other respects lends credence to Dicks’
opinion, but others (e.g. Thoren (1971)) do not share his view.
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Fig. 2.2. Eudoxus’ scheme for the motion of the planets.

the greatest apparent diameter of which is 14 per cent larger than its smallest.
Simplicius was well aware that, even judged by the astronomical knowledge of
Eudoxus’ day, the system of concentric spheres had serious deficiencies.

Nevertheless the theories of Eudoxus and his followers fail to save the phenomena,
and not only those which were first noticed at a later date, but even those which
were before known and actually accepted by the authors themselves.”

Perhaps the main fascination with Eudoxus’ theory is with his method for
accounting for the retrograde motion of the planets, which he did by adding
an extra sphere (see Figure 2.2).9 Just as in the case of the Sun and the Moon,
the first and second sphere together account for the diurnal rotation and the
regular motion around the ecliptic in the appropriate zodiacal period. The axis
of the third sphere was in the plane of the equator of the second sphere (i.e.
in the ecliptic plane) and the axis of the fourth sphere was inclined at a small
angle « to that of the third. Crucially, the third and fourth spheres rotated in

s SiMPLICIUS on De caelo. Translation from Heath (1932).
Since Simplicius lived nearly 1000 years after Eudoxus, it is quite possible that the phenomena
he attempted to describe using Eudoxus’ scheme, such as retrograde motion, were not those that
Eudoxus originally had in mind (see Goldstein (1997)). However, Yavetz (1998) claims that,
given the nature of the Eudoxan model, the most likely explanation is that retrograde motion
was the object of the design.
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opposite directions but at the same rate of 1 revolution per synodic period of the
planet.

The motion of the third and fourth spheres together combine to generate a
figure-of-eight-type curve, which Eudoxus termed a hippopede, named after
the device used to tether a horse by its feet.

... the fourth sphere, which turns about the poles of the inclined circle carrying
the planet and rotates in the opposite sense to the third, i.e. form east to west, but
in the same period, will prevent any considerable divergence (on the part of the
planet) from the zodiac circle, and will cause the planet to describe about this same
zodiac circle the curve called by Eudoxus the hippopede . . L

When superimposed on the regular motion induced by the outermost two
spheres, the hippopede has the effect of producing small deviations in latitude
and occasional periods of retrograde motion, as required. This curve was only
of limited success in modelling the observed planetary motion, but is an early
example of the study of curves in space and its construction demonstrates a
great deal of mathematical skill."

With modern mathematical techniques, visualization of Eudoxus’ hippopede
is much simpler than it was for the ancients. If we introduce orthogonal unit
vectors {ij, ji, K}, where k; is along the axis of rotation of the fourth sphere
(FG in Figure 2.2) and i; and j lie in its equatorial plane and rotate with it,
then the position of the planet is given, for all times, by the vector i;. Next,
we introduce a second set of vectors {i,, jo, ko} which are the same as the first
except that the vectors i, and j, do not rotate with the sphere. Hence, the vectors
iz, j» are related to iy, j; via a 2 x 2 rotation matrix, and if the angular rotation
rate of the fourth sphere is —<2 we have:

i> cosQt sinQt O i i
2l =1 —sinQt cosQr O irl=4A1il
k, 0 0 1 Kk, k;

for example. Finally, we introduce an orthogonal set of vectors fixed in the third
sphere with k3 along its axis of rotation (C D in Figure 2.2) and, hence, in the
ecliptic plane, which makes an angle o with k; and k;. Since the angular speed

' StmpLICIUS on De caelo. Translation from Heath (1932).
The question as to how Eudoxus devised his construction of the hippopede has been the
subject of much research and speculation (see, for example, Neugebauer (1953) and Riddell
(1979)). Aaboe (1974) claims that Eudoxus’ model could have been meant only as a
qualitative description of the planets, because if one enters in the appropriate periods for Venus
or Mars there is simply no way of producing retrograde motion. Yavetz (1998) disputes this for
the case of Mars.
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Fig. 2.3. An example of a planetary path in Eudoxus’ theory.

of this sphere is €2, we have:

i3 cosa cos 2t —sin 2t sino cos 2t ir i>
j3 ] = | cosasinQr cosQt  sinasin Qf i1=4A1i01
k; —sina 0 cos o k, k,

for example. It follows that the position of the planet in terms of {is, j3, k3} is:

1 cos & cos® Qt + sin® Q¢
AA1 0] = | (cosa — 1) cos 2t sin 2t
0 — sin« cos 2t

This, then, is the parametric equation of the hippopede. For the purpose of
illustrating the type of planetary paths that can result from Eudoxus’ model,
we can superimpose a uniform motion in the k3 direction, corresponding to
the motion around the ecliptic, and obtain various curves like that shown in
Figure 2.3, in which the angle o was taken as 5°. The curve shows how Eudoxus’
construction leads to paths that deviate by a small amount above and below the
ecliptic, and are predominantly in one direction, but with regular periods of
retrograde motion.

As a quantitative predictive tool, Eudoxus’ system of concentric spheres
would not have been much use and, since it was developed before the Greeks
came into contact with the accurate arithmetic astronomy of the Babylonians, it
is reasonable to think that quantitative prediction was not its purpose. However,
as the goals of Greek astronomy evolved, other astronomers attempted to modify
the scheme so that it better represented the observed phenomena. Callippus of
Cyzicus, who was a pupil of a pupil of Eudoxus, added seven more spheres to
Eudoxus’ scheme.

Callippus set down the same arrangement of spheres as did Eudoxus, and gave the
same number as he did for Jupiter and Saturn, but for the sun and moon he thought
there were two spheres still to be added if one were going to account for the
appearances, and one for each of the remaining planets,12

2 ARISTOTLE Metaphysics, Book A8, 1073b. Translation from Aristotle (1999).
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The two extra spheres for the Sun were introduced to accommodate the variation
in the length of the seasons — summer, autumn, winter and spring — which were
measured by Callippus, around 330 BC, as 92, 89, 90 and 94 days, respectively,
each being accurate to within 1 day.

The details of Eudoxus’ theory are not known with any certainty, but we do
know that the scheme exerted a profound influence over the development of
astronomical thought. It was not as good at predicting the future positions of
heavenly bodies as the arithmetical schemes of the Babylonians, but it was far
more influential. This was because it demonstrated the power of geometrical
techniques, in that superpositions of simple uniform rotations could be used to
model extremely complex behaviour, and because it (as modified by Callippus)
was adopted by the giant of Greek scientific philosophy — Aristotle — whose
teachings dominated intellectual thought for the next 2000 years. As a scientific
theory, Eudoxus’ system of concentric spheres is best described as ad hoc. It
explains the phenomena only in as much as they are built into the model. It
does not predict or explain any independent result, and is untestable because
the model’s intrinsic parameters simply can be modified whenever observations
fail to fit in with predictions.]3

Aristotle

Aristotle was a pupil of Plato, but the two men differed significantly in their
approach to the understanding of the natural world. Plato was an idealist who
focused on mathematics as the underlying reality, whereas Aristotle took a more
pragmatic approach and emphasized physical aspects (e.g. cause and effect); he
searched for reasons why things were as they were. Aristotle’s modification of
Eudoxus’ system (he described his cosmology in the work On the Heavens, or
De caelo in Latin) was not undertaken from the point of view of a mathematical
astronomer, but as part of his bold attempt to unify all the separate branches of
natural philosophy. As mentioned above, it is unclear whether Eudoxus regarded
the spheres in his system as mathematical constructions or material entities, but
in Aristotle’s version the spheres were regarded as real physical objects, motion
being imparted to the planets by the divine and eternal ‘ether’ (a word derived
from the Greek for ‘runs always’) which filled the spheres. This insistence on
the physical reality of the spheres led to the addition of many more spheres to

** The status of Eudoxus’ homocentric spheres as a scientific theory is discussed and compared
with later models in O’Neil (1969).
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Callippus’ model, twenty-two in all, so as to undo the motion of each planet
before beginning the set of spheres associated with the next planet.

Aristotle wrote on many other subjects (e.g. physics, chemistry and biology)
and attempted, with a considerable degree of success, to organize all knowledge
into a unified whole. As a result, it became very difficult to criticize one aspect
of Aristotle’s teachings without criticizing it all. This led to a degree of stability
and is one of the reasons why Aristotelian cosmology had such a pervasive
influence. Central to Aristotle’s teaching was the idea of a stationary Earth at
the centre of the Universe:

... the natural movement, both of parts of the earth and of the earth as a whole, is
toward the centre of the universe — this is why the earth now actually lies at the
centre . .. It happens that the same point is the centre both of the earth and of the
universe. . . . It is clear from these considerations that the earth neither moves nor
lies away from the centre."’

These conclusions followed from Aristotle’s terrestrial physics in which natural
motion was toward or away from the centre of the universe, depending on
the ‘heaviness’ of the material concerned. When thought of in terms of the
physics of the time, ideas like a moving Earth were indeed ridiculous, even if
they could be used accurately to model celestial phenomena. A new terrestrial
physics would be needed before astronomers could make the leap to a planetary
Earth.

Aristotle made a complete distinction between the sublunary world (in which
he included comets and the Milky Way!) and heavenly objects, beginning with
the Moon and extending to the stars. The physics of these regions were totally
different. In the former (described in his Meteorology) everything was explained
in terms of the four elements earth, water, air, and fire. The central Earth was
surrounded by water (the oceans) which itself was surrounded by a shell of
air (the atmosphere). Between the atmosphere and the Moon there was a shell
of fire. These regions represented the natural habitat of each element and thus
explained why fire travelled upwards but a stone fell toward the earth. Within the
sublunary world everything, including life itself, was imperfect and changing
continually.

On the other hand, the celestial regions were ordered perfectly and never
changed. This supralunary world was formed out of a fifth element, the ether
(or in medieval terminology ‘quintessence’) and uniform circular motions
were considered natural for heavenly bodies, straight line motion being natural

14 ARISTOTLE On the Heavens, I1. Translation from Heath (1932).
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on Earth. Aristotle believed that all the heavenly bodies where spherical; such
a shape was in his view ‘appropriate’ for heavenly bodies.” The belief that the
Moon was spherical is attributed to the Pythagoreans, who argued that the shape
of the phases of the Moon are those that would be observed if the Moon were
spherical and illuminated on one side by the Sun. Aristotle argued that if one
heavenly body was spherical, they all must be. He also supported the idea that
the Earth was a sphere based on a number of observations. Among these were
the facts that during a lunar eclipse the shadow cast by the Earth on the Moon is
consistent with a spherical Earth, and that when one travels north or south the
stars which are visible above the horizon change, indicating that the angle be-
tween the observer’s horizon and the celestial equator has changed. A spherical
Earth is consistent also with Aristotle’s terrestrial physics in which the matter
making up the Earth is subject to a constant tendency to move toward its centre.

Aristotle was aware that the apparent daily motion of the stars could equally
well be accounted for by a rotation of the Earth about its own axis, as suggested
by his contemporary Heraclides, but he rejected this idea on the ground that
circular motion was a property of the heavenly bodies only. Thus, for Aristotle
the diurnal rotation of the stars was real and he needed to determine its cause.
Plato had thought of the heavenly bodies as gods who supply their own move-
ment, but in Aristotle’s philosophy every motion required some driving force.
To set the celestial mechanism in motion, Aristotle invented the concept of a
supreme Prime Mover. The Prime Mover did not actually do anything to move
the sphere of the stars, since that would imply motion and, hence, a new cause;
instead, the sphere moved due to the desire for perfection that He aroused in it.
Aristotle used the motion of the sphere of the stars to prove that the Universe
is finite, since, he argued, a line from the Earth of infinite length could not
possibly complete 1 revolution in a finite time, whereas the fixed stars rotated
once every 24 h. He backed this up by pointing out that a body with a centre
cannot be infinite and yet the Universe has a centre, namely the centre of the
Earth.

Another Aristotelian principle, closely related to the finiteness of the
Universe and very significant in later developments, was the impossibility of
a vacuum. This principle, which was supported by a number of simple ex-
periments, followed from Aristotle’s theory of motion in which the speed of
a body was, other things being equal, inversely proportional to the resistance

" The status of the Moon itself in Aristotle’s writings is somewhat ambiguous. It was common in
Greek intellectual culture to ascribe an Earthly nature to the Moon and when Aristotle refers to
the relation between the Moon and the sublunary world such characteristics are often present.
When discussing celestial motion, however, the Moon is a prefect, unchanging sphere (see
Montgomery (1999)).
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of the medium through which it was moving. In a vacuum there would be no
resistance and it would thus take no time at all to travel between two points.
Aristotle argued that space and matter could not be considered independently:
it was impossible to have one without the other. There was no matter outside
the sphere of the fixed stars and, hence, no space; there was nothing. Some
Greek philosophers (the Stoics) agreed with Aristotle that there could be no
vacuum within the Cosmos, but believed that outside the sphere of the fixed
stars there was an infinite void. There were those who took a contrary view
however, most notably the atomists, led by Leucippus and Democritus, who
believed that the Universe consisted of atoms moving about in an otherwise
infinite void.

Aristotle’s cosmology certainly was ingenious but, from a technical point
of view, turned out to be unsatisfactory as there were a number of observ-
able phenomena it could not hope to reproduce or explain. Within a century of
Aristotle’s death, mathematicians who had come into contact with the quan-
titative predictive astronomy of the Babylonians were developing geometrical
theories that violated many of Aristotle’s fundamental physical principles in
order to account for subtle irregularities in the positions of the heavenly bodies.
The influence of Aristotle’s cosmology did not diminish, however. Following
the demise of the Greek civilization, a large quantity of Aristotle’s work (unlike
that of Plato) was translated and became available to scholars in the Islamic
world and then in Europe during the Middle Ages. For more than two millennia
Aristotle’s conceptually simple view of the Universe reigned supreme, though
many of those who adhered to it were unaware of its deficiencies.

Most people believed that the heavenly bodies had great influence over things
that happened on Earth, and the study of these influences through astrology
was undertaken widely by professional astronomers. Some influences were
obvious (e.g. the Sun’s position on the ecliptic is tied to the seasons) and it was
natural to generalize and assume similar influences for all the stars and planets.
Aristotelian cosmology helped to reinforce these ideas, since it provided a
plausible mechanism by which the motion of heavenly bodies could affect
terrestrial phenomena. The constant friction between the celestial spheres, and
ultimately between the sphere of the Moon and the sublunary world, was the
primary mechanism for all change on Earth. Much of the desire for accurate
planetary tables came from those who wished to use them to cast horoscopes,
and these were often relied upon when making important decisions. As a result,
astrology was a major driving force behind technical astronomy. Also, since
astrology fits in well with an Earth-centred cosmology, but loses much of its
ideological force when the Earth is relegated to a planet, it helped to shackle
astronomers to geocentrism.
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Developments in mathematics

Eudoxus’ concentric spheres encouraged the study of spherical astronomy
(sphaerics), the first known works on which were On the Moving Sphere and On
Risings and Settings by Autolycus of Pitane, written between 330 and 300 BC.
Autolycus’ works, which contain a variety of simple geometrical theorems,
seem to have been superseded quickly by Euclid’s Phaenomena, believed to
have been written about 300 BC." From then on, sphaerics became a standard
branch of Greek mathematics. Euclid’s Phaenomena is a geometrical treatment
of various problems relating to the risings and settings of stars and, in particular,
addresses at length the problem of how to determine the duration of daylight
on a given day at a given location.

The Phaenomena is, however, only a minor work of Euclid, who was respon-
sible for the most successful textbook ever written: the Elements, also written
in about 300 BC, and used as the primary source for teaching geometry to
schoolchildren until the 1970s.” Of Euclid’s life we know virtually nothing,
but it is assumed that he studied in Athens and then, after the death of Alexander
the Great in 323 BC, migrated to Alexandria where he established a school,
known as the Museum.

The Elements was not the first textbook of elementary Greek mathematics,
but clearly it was so superior to the others that it alone has survived. It con-
sists of thirteen books dealing with the basic properties of rectilinear figures
and circles, the theory of proportion, the theory of numbers, the classification
of incommensurables, and solid geometry. The style of the book, consisting
entirely of definitions, axioms, theorems and proofs, determined the nature of
all subsequent Greek mathematical works and, indeed, much mathematics that
is written today still bears the hallmark of this early Greek paradigm.

The contents of the Elements show that in the three centuries since the begin-
nings of deductive mathematics in Ionia, the Greeks had made great progress in
mathematics. Two things are particularly important for our discussion of math-
ematical astronomy. First, Greek mathematics was almost entirely geometry.
The algebraic methods that we find indispensable today were not introduced
until AD ninth century, and the idea that algebraic equations could be used to
represent curves and surfaces did not become fully understood until the sev-
enteenth century. Second, the only curves that appear in the Elements are the
circle and the straight line, and these two geometrical objects dominated Greek
mathematical thought for 1000 years.

' A translation of the Phaenomena is given in Berggren and Thomas (1996).
The Elements has appeared in more editions than any other book apart from the Bible. The
most famous English translation is that of Sir Thomas Heath (Euclid (1956)).
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Fig. 2.4. Conic sections.

Other curves were discovered slowly however, and the most important of
these were the conic sections — the ellipse, parabola and hyperbola — credited
to Menaechmus, a pupil of Eudoxus, in about 350 BC. About 130 years later,
Apollonius wrote his treatise on conic sections that is one of the masterpieces
of Greek mathematics. Apollonius obtained these curves as the intersections of
a plane and a cone, with the three curves being the result of using a different
angle of intersection, as shown in Figure 2.4. If the intersecting plane exactly
is parallel to one of the generating lines of the cone, we obtain a parabola;
otherwise, we get an ellipse or hyperbola, as shown.

Menaechmus, however, used a different construction in which the intersect-
ing plane is always perpendicular to one of the generating lines of the cone,
and the different curves are obtained by varying the vertex angle of the cone.
It is not known for certain what led to the discovery of the conic sections. One
possibility is that they were stumbled upon in the course of attempting to solve
the three famous construction problems of antiquity (squaring the circle, dupli-
cating the cube and trisecting the angle). However, it has been suggested]8 that
Menaechmus’ curious construction — which insists on the perpendicularity of
the intersecting plane to the generating lines of the cone — suggests an astro-
nomical heritage. As the Sun moves in a circular arc across the sky, the surface
described by the ray that just clips the top of a gnomon clearly is conical, and the
path mapped out by the end of the gnomon’s shadow can thus be thought of as
the intersection between a plane (the ground) and this cone. Hence, it will be a

' Neugebauer (1948).
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Fig. 2.5. The shadow of a sundial.

conic section and, provided the Sun dips below the horizon during a revolution,
it will be a hyperbola (see Figure 2.5). If at some point during the motion of
the Sun it is directly overhead, then the gnomon will be parallel to one of the
generating lines of the cone and perpendicular to the intersecting plane.

The conic sections were recognized by the Greeks as being important geo-
metrical objects, but they were not thought to have any physical significance.
The only physically significant curves were the circle — circular motion being
natural for heavenly bodies — and the straight line — rectilinear motion being
natural for earthly bodies. This mode of thinking did not change until the seven-
teenth century when Galileo discovered that projectiles follow parabolic paths
and Kepler showed that planets have elliptical orbits.

Aristarchus

The predominant Greek view of the Universe had the Earth at the centre. This
was Eudoxus’ starting point and was fundamental to the whole of Aristotelian
physics. An alternative cosmology in which the Sun, Earth and the other celestial
bodies revolved around a central fire had been suggested by the Pythagorean
Philolaus, and another notable exception to the prevailing viewpoint was that
espoused by Aristarchus, from the island of Samos in Asia Minor.” Aristarchus

v Very little is known about Aristarchus. According to Hipparchus he observed the time of the
summer solstice in 281 BC.
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is credited by Archimedes as having postulated that the Earth is not at the centre
of the Universe, but that it orbits the Sun. It was Copernicus, in the sixteenth
century, who first developed a serious cosmology based on this principle, and
so Aristarchus is often referred to as the Copernicus of antiquity. However, the
attribution of a fully fledged heliocentric theory to Aristarchus is based actually
on extremely scant evidence. Much is made nowadays of the following passage
from Archimedes:

But Aristarchus of Samos brought out a book consisting of certain hypotheses, in
which the premises lead to the conclusion that the universe is many times greater
than that now so called. His hypotheses are that the fixed stars and the sun remain
motionless, that the earth revolves about the sun in the circumference of a circle,
the sun lying in the middle of the orbit, and that the sphere of the fixed stars,
situated about the same centre as the sun, is so great that the circle in which he
supposes the earth to revolve bears such a proportion to the distance of the fixed
stars as the centre of the sphere bears to its surface.”

Archimedes’ work, of which the above quotation forms a part, is a demon-
stration of his skill in using the Greek numeration system to manipulate very
large numbers. Ostensibly, Archimedes was attempting to calculate the number
of grains of sand that the Universe could hold and he concluded that this had to be
less than the unimaginably large number, 10 %3, Clearly, this required a knowl-
edge of the size of the Universe, and Archimedes tried deliberately to overesti-
mate this. He criticized Aristarchus’ heliocentric hypothesis because, in order
for it to reproduce the observed phenomena; the stars would have to be infinitely
far away, contradicting Archimedes’ hypothesis that the Universe is finite. The
problem is that of stellar parallax: if the Earth is orbiting the Sun, then the ob-
served longitude at which a fixed star is found would vary as the Earth moved
around its orbit (see Figure 2.6). Such changes were, however, not observed.

There are many theories, all very speculative, of why the heliocentric theory
did not catch on and was superseded so completely by geocentric astronomy.
Perhaps the most plausible is the simple fact that the geometrical skill of the
Greeks allowed them to devise ingenious constructions that modelled accu-
rately the motions of all the heavenly bodies without having to take the drastic
step of removing the Earth from its privileged position at the centre of the
Universe.

* ARCHIMEDES Psammites (Sand Reckoner). Translation from Heath (1932). Aristarchus’
heliocentric theory is discussed at length in Heath (1913), but Wall (1975) is of the opinion
that Heath has made rather too many assumptions and that there is no evidence that
Aristarchus ever wrote a treatise on his heliocentric hypothesis. Indeed, it is very likely that all
known references to Aristarchus’ theory are derived from this one remark of Archimedes.
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E,

E,

Fig. 2.6. Stellar parallax. E; and E, are two points on the orbit of the Earth.

The earliest complete astronomical treatise that has survived from an-
cient Greece is Aristarchus’ On the Sizes and Distances of the Sun and
Moon.” The organization of the work, starting with axioms and then mak-
ing logical deductions from them, is similar to that of the great contemporary
works in geometry such as Euclid’s Elements. The treatise is based on six
hypotheses:

(1) The Moon receives its light from the Sun.

(i1) The Earth is positioned at the centre of the sphere in which the Moon
moves.

(iii) When the Moon appears to us halved, the great circle which divides the
dark and bright portions of the Moon is in the direction of our eye.

(iv) When the Moon appears to us halved, its angular distance from the Sun is
87°. (This value is considerably in error. The true value is about 89° 50 .)

(v) The breadth of the Earth’s shadow is that of two Moons. (This figure
presumably was based on the length of lunar eclipses. The correct figure
is nearer three lunar diameters.)

(vi) The Moon has an angular diameter of 2°. (About 4 times too large.zz)

2; A translation is given in Heath (1913).
Further on in the work Aristarchus assumed that the angular diameter of the Sun is the same as
that of the Moon, i.e. 2°. Archimedes claimed that Aristarchus later discovered the much more
accurate value of 1/2° for the angular diameter of the Sun, in agreement with his own
observations (see Shapiro (1975)). It is likely that Aristarchus’ figure of 2° for the Moon’s
angular diameter was not based on measurements at all, but simply assumed for the purposes
of his demonstration (see van Helden (1985), p. 8).
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Moon

Earth

Fig.2.7. Aristarchus’ method for determining the relative distances from the Earth
of the Sun and Moon.

Using the first four of these hypotheses, which are illustrated in Figure 2.7,
Aristarchus concluded that the ratio of the distance from the Earth to the Sun,
ds, to that of the moon, dy;, satisfies the inequality

18 < ds/dy < 20.

The derivation of the value of ds /dy from Figure 2.7 would now be a simple
exercise in trigonometry (dy/ds = cos 87° = sin 3°) but this had not yet been
invented. The reason for the inequality that results from Aristarchus’ calcula-
tions has nothing to do with an estimate of the accuracy of the experimental data,
but instead represents the accuracy with which Aristarchus could determine
what we would now write as sin 3°. Here, we will demonstrate his argument
for showing that ds/dy > 18, which is particularly elegant. In Figure 2.8, E, S
and M represent the Earth, Sun and Moon with /ZESM = 3°. The line EA isa
continuation of M E such that |[AM| = |M S|, and SC bisects the angle M SA.
The line BC is perpendicular to AS so that |BC| = |CM]|.

Aristarchus began by noting that

[CSM 223 15

/ESM ~ 3 2’
from which it follows, using the equivalent of the fact that tan«/ tan § > o/
if B < a < 90° (a result which was well known in Aristarchus’ time; a proof

can be found in Euclid’s Optics), that

|IcM| 15
— > . Q.1)
|EM| ~ 2
Next, we observe that
ICA> _|CAP? _ 49

cMi2 _ [CBE_ °7 25
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A

Fig. 2.8. Aristarchus’ method for showing that ds /dy > 18.

and, hence, that |CA|/|C M| > 7/5, which in turn implies that
|AM| |CA|+ |CM| 12
= > —.
|CM| |CM| 5
(Note that here Aristarchus has used the well-known Pythagorean approxima-
tion to /2, namely 7/5.) Putting Eqns (2.1) and (2.2) together we obtain
|AM| |[AM| |CM| 12 15
frd . > — c — =
|EM| |ICM| |EM| 5 2
But |[ES| > |[MS| = |AM|, and so we arrive finally at the desired result
d ES
ds _IESL g
dm |EM|
Having determined the relative distances of the Sun and Moon, Aristarchus
immediately could deduce the relative sizes of the Sun and Moon since (from
the observed ‘fact’ that the Moon exactly eclipses the Sun) he assumed that
they have the same angular diameter. Hence, the radii of the Sun and Moon, rg
and ry, for example, satisfy

(2.2)

18.

18 < I’S/I’M < 20.

Aristarchus’ geometry based on the bisected Moon is flawless, but the inac-
curacies in his observations mean that his results are not. The correct value
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Fig. 2.9. A simplified illustration of Aristarchus’ method for determining the
relative sizes of the Sun and Moon.

of rs/rv is about 400. However, the conclusion that the distance to the
Sun is about 19 times greater than the distance to the Moon appears fre-
quently in astronomical writings over the course of the 2000 years following
Aristarchus.

Aristarchus then went on to determine the sizes of the Sun and Moon relative
to the Earth. His method was fairly complicated, but a simplified version is given
below and illustrated in Figure 2.9.” The centres of the Sun, Earth and Moon are
S, E and M, respectively, and the lines SA, EB and M C are all perpendicular
to SEM and intersect the circles representing the Sun, Moon and Earth at A,
B and D, respectively. Then ABF is a good approximation to the tangent to
the Sun and Earth and, hence, |M C| is close to the radius of the shadow of the
Earth at the distance of the Moon, which is 2ry; according to Aristarchus’ fifth
hypothesis.

Using the similarity of the triangles ASF, BEF and CM F we can deduce
that

rde + ZI’MdS = I’E(ds + dM),

and if we substitute into this equation Aristarchus’ mean value for the relative
sizes of the Sun and Moon (i.e. ds = 19dy;, rs = 19r\v) we obtain”

rs 20 1391 20
_— = — and — = —.
I'e 3 I'e 57
The correct value for rg/rg is about 109. Aristarchus used his results to show
that the volumes of the Sun and Earth are in the ratio of between 254 : 1 and

* Based on that given in Boyer (1989). This type of eclipse diagram played a leading role in
distance determinations until the seventeenth century.
Aristarchus actually carried out his geometrical calculations maintaining the consequences of
the inequalities for the relative sizes of Sun and Moon and obtained the estimates
19  rs 43 43 ™ 19

a 9= M
3 s -6 ° 108 = 7 60
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Fig. 2.10. Eratosthenes’ method for determining the size of the Earth.

368 : 1. It may be that the fact that the Sun was thus such a massive object
compared to the Earth was one of the reasons Aristarchus was led to believe
that the Sun was at rest with the Earth orbiting round it.

While the relative sizes of the Sun, Moon and Earth were understood poorly
by the ancient Greeks, the actual size of the Earth was determined with some
accuracy. In On the Heavens Aristotle credits ‘the mathematicians’ with the
figure of 400000 stades for the circumference of the Earth, but left no indi-
cation of how, or by whom, this figure was determined. A stade was a unit of
distance the value of which varied from one place to another so it is hard to
judge the accuracy of Aristotle’s figure, but it would appear to be a significant
overestimate.

This value was improved significantly in the following century by
Eratosthenes, the director of the Library at Alexandria (see Figure 2.10). He
found that at noon on the summer solstice the Sun was directly overhead at
Syene (present-day Aswan) while at the same time in Alexandria, which he
assumed to be about 5000 stades due north, the Sun was 7%0 (i.e. one-fiftieth
of a circle) from the zenith.” Eratosthenes concluded that the circumference of
the Earth is 5000 x 50 = 250 000 stades. This was later changed to 252 000,
possibly in order to have a round figure of 700 stades per degree. Depending
on the interpretation of a stade, this could be anything from about 5 per cent
too small to 25 per cent too big.27

® According to Diller (1949), 1 stade could be anything between about 150 and 200 m. Thus,
400 000 stades is somewhere between 60 000 and 80 000 km. The Earth’s circumference is
actually about 40 000 km.
Actually the difference in latitude between Aswan and Alexandria is slightly less than
Eratosthenes’ value, and there is a difference in longitude of approximately 3°.
Eratosthenes’ original work on the measurement of the Earth is lost and our knowledge of his
technique comes from a number of later sources, notably Cleomedes, a popular writer on
astronomical matters. There has been much debate about the precise details of Eratosthenes’
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Eratosthenes is credited” also with measuring the obliquity of the ecliptic,
arriving at a value of 22/83 of a right angle,29 or about 23° 51’, which is within
1 per cent of the true value for that time.

Eccentric circles and epicycles

Some 150 years after Eudoxus, Apollonius of Perga (who spent most of his
life in Alexandria and is now most famous for his work on conic sections)
devised a new solution to Plato’s challenge of saving the phenomena using
uniform circular motions. No astronomical works of Apollonius survive; we
know of his writing only through the later work of Ptolemy. It was well known
that Eudoxus’ scheme of homocentric spheres failed to account for certain
readily observable phenomena (e.g. the varying brightness of the planets) and
Apollonius suggested a scheme based on eccentric circles and epicycles in order
to get round this difﬁculty.m

He developed two equivalent models for the motion of the Sun (illustrated
in Figure 2.11) that were designed to account for the fact that the time between
the vernal equinox and summer solstice (measured by Callippus as 94 days)
is longer than that between the summer solstice and the autumnal equinox (92
days). In the first scheme, the annual motion of the Sun S was around a circle
(the dashed circle in the diagram) the centre of which was not the Earth E, but
a point D called the ‘eccentre’, displaced away from the Earth, the distance
|DE| being known as the ‘eccentricity’. Alternatively, we can consider the
Sun positioned on a small circle (the epicycle) the centre C of which rotates
uniformly about the Earth around another circle (the deferent). The epicycle
rotates in the opposite sense to that with which C rotates around the deferent,
but with the same angular speed, so that £ D SC remains a parallelogram. The
path traced out by the Sun S will again be the dashed circle. The point C, which
rotates around the Earth at a uniform rate at the same average speed as the Sun,
represents the mean position of the Sun.

method; see Dutka (1993) and the references cited therein; also, Fischer (1975), Rawlins
(1982), Goldstein (1984). Posidonius used a similar method a century later, involving
Alexandria and Rhodes, to obtain a similar estimate for the Earth’s size. On the relative merits
of Posidonius’ and Eratosthenes’ contributions (see, for example, Taisbak (1974)).

By Ptolemy, Almagest, Book I, 12 (see Toomer (1984)).

An explanation for this curious ratio is given in Fowler (1987), pp. 51-2.

Apollonius was probably not the first person to develop an epicycle theory; indeed, van der
Waerden (1974, 1982) provides evidence that the Pythagoreans were in possession of a
primitive epicycle theory. However, as far as we know, Apollonius was the first to show how
epicycles could be used to model all the main features of planetary motion, including
retrograde motion.
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Fig. 2.11. Eccentric circles and epicycles for the Sun.

In order to use these models it is necessary to determine the length and
direction of the line E D so that the position of the Sun relative to the Earth
matches the observations. This requires the ability to solve the triangle DES
which in turn requires trigonometry. It was precisely this sort of need that led
to the later development of that subject by the astronomers Hipparchus and
Ptolemy.

Apollonius also made the crucial realization that the epicyclic model could
be used to account for the retrograde motions of the planets if the epicycle ro-
tates in the same sense as that with which its centre rotates around the deferent;
this is illustrated schematically in Figure 2.12. If the radii and the speeds of
rotation of the two circles are chosen suitably, the combined effect produces mo-
tion that is predominantly anticlockwise, but with short periods during which
the planet appears from the Earth to move in the opposite direction. It was
well known in Apollonius’ time that the superior planets appear brighter dur-
ing their periods of retrograde motion and the epicycle model explained this
quite naturally, because these were precisely the places at which the planets
were closest to the Earth. The epicycle—deferent construction was a significant
improvement over Eudoxus’ homocentric spheres, but in its basic form it was
still incapable of reproducing the complex motions of the planets with any real
accuracy.
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Fig. 2.12. Epicycles and retrograde motion.

Apollonius did more than just indicate that epicycles can be used to produce
retrograde motion. He also proved an important theorem that provides a condi-
tion that the rotation rates and radii of the epicycle and deferent must satisfy for
stationary points (i.e. points where the planet appears to change direction) to
occur, and this is illustrated in Figure 2.13. The epicycle rotates anticlockwise
about its centre C, with angular speed w,, while the point C rotates in the
same sense with angular speed w; around the deferent, the centre of which is
the Earth, E. The resulting motion for the planet is the dashed curve, and there
are two points at which the motion appears stationary as seen from the Earth,
one of which is the point P.

The velocity of the planet at P can be decomposed into two parts, one due
to the rotation of C around the deferent (the vector with magnitude u) and
one due to the rotation of the epicycle (the vector with magnitude v). Clearly
u = w|EP|and v = w;|C P|. For the point P to be stationary as seen from the
Earth, the sum of these two velocities must lie along E P and, hence, we must
have u = vcos LAPD. Now, since ZAPC and /B P D are both right angles
it follows that /AP D = /C P B and, hence, that cos /APD = |BP|/2|CP]|.
Putting all this together gives the condition for stationary points as

w|EP| = {w,|BP|.
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E

Fig. 2.13. Apollonius’ theorem on stationary points.

Apollonius’ proof was rather different (and rather more complicated) be-
cause he did not have modern trigonometrical methods at his disposal.m Now,
1/2|BP| < |CP|and |[EP|+ |CP| > |EC|, so a consequence of this theorem
is that retrograde motion can occur only if the angular speeds and the radii of
the epicycle and deferent satisfy the inequality32

w1 |CP|

—_— <
wy |EC| — |CP]|

In the hands of the ancient Greeks, the epicycle—deferent mechanism was
employed skillfully to account for many different irregularities in the motions
of the heavenly bodies. By altering the relative sizes of the two circles and
their directions of rotation, different effects could be produced, and by placing
epicycles upon epicycles, extremely complex motions could be generated. This
basic mechanism was the cornerstone of all quantitative planetary theories until
the time of Kepler. Even Copernicus, who succeeded in removing the need to

z; More details can be found in Neugebauer (1955, 1959).

~ Itis not known whether Apollonius used his theorem to determine the numerical values of the
parameters necessary to reproduce the observed phenomena, but Ptolemy later used it in Book
XII of the Almagest to construct a table of stationary points even though it is not strictly valid
for Ptolemy’s more complicated scheme.
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model retrograde motion using epicycles, still made extensive use of them to
account for other irregularities.33

* The power and versatility of the epicycle is described in Hanson (1960). Hanson shows that an
orbit of any given shape can be reproduced to any given accuracy by a model built up from a
finite number of epicycles placed one upon the other. Mathematically this is equivalent to
approximating an arbitrary continuous function by a finite truncation of a Fourier series.
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The Ptolemaic universe

Hipparchus

Hipparchus, who lived in the second century BC,' built an observatory and
performed most of his work on the island of Rhodes and was perhaps the
greatest astronomer of antiquity. He used observations to produce geometrical
models with real quantitative predictive power. His theory of the motion of the
Sun was extremely accurate and he produced a model for the Moon that worked
well at new and full moons, thus enabling him to produce a theory of eclipses
which, in the case of lunar eclipses, was very successful.

All of Hipparchus’ works are lost except for his relatively unimportant Com-
mentary on the Phaenomena of Eudoxus and Aratus,’ though Ptolemy quotes
his work often, sometimes verbatim. We also know of Hipparchus’ work on
the Sun through an introduction to astronomy written in AD first century by
Geminus of Rhodes. Part of the reason for the lack of extant work by Hipparchus
may well be the fact that Ptolemy’s subsequent writings superseded those of
his predecessor so totally, just as the existence of Euclid’s Elements rendered
obsolete all previous works on geometry.

Hipparchus attempted to use the eccentric circles and epicycles of Apollonius
to develop models for the motion of the heavenly bodies that, in contrast to
Babylonian theories, would enable future positions to be calculated for all
times. For the Sun and the Moon he found that he could use just one such
device, but for the planets he needed to combine the two. He was a great

l Ptolemy refers to observations made by Hipparchus between 161 and 126 BC.

" In about 275 BC, Aratus of Soli wrote a very popular poem (the Phaenomena, inspired by a
more technical, but now lost, work of Eudoxus) describing the risings and settings of stars and
weather signs in both heavenly and natural phenomena. It was later translated into Latin and
remained widely read for over 1000 years. Kidd (1997) contains a translation and commentary.

51



52 The Ptolemaic universe

observational astronomer who improved the design of the instruments used for
observing the skies and used these instruments to compile a catalogue of about
850 stars.

As we have seen, quantitative calculations that arose from astronomical
problems often involved the solution of triangles, and it was for this reason that
the subject of trigonometry developed. In fact, trigonometry did not become
a branch of mathematics separate from astronomy until the fifteenth century.
Hipparchus, who is considered to be the founder of trigonometry, constructed
a table of chords (equivalent to a table of sines) though we do not know how
he did this.’ He subdivided the circle into 360°, an idea introduced into Greek
astronomy from Babylonia through the work of his contemporary, Hypsicles of
Alexandria.

One of Hipparchus’ greatest achievements was his discovery of the preces-
sion of the equinoxes. He discovered that the points at which the ecliptic crosses
the celestial equator move slowly with respect to the stars. He was able to do
this because Babylonian astronomical data became available in the Greek world
and he examined systematically old observations and compared them with his
new ones in order to discover changes that were too slow to be detected by
astronomers using only data gathered during their own lifetimes. The arrival of
large quantities of data covering observations made over many centuries helped
transform Greek astronomy. It was now possible to take the geometrical mod-
els that had been developed and use them to produce procedures for accurate
quantitative prediction. The work of Hipparchus, based as it was on a merging
of Greek and Babylonian approaches, marks the transition between qualitative
and quantitative mathematical astronomy.4

Hipparchus’ contributions to astronomy were enormous. In the words of the
French astronomer J.-B. J. Delambre:

When we consider all that Hipparchus invented or perfected, and reflect upon the
number of his works and the mass of calculations which they imply, we must regard
him as one of the most astonishing men of antiquity, and as the greatest of all in the
sciences which are not purely speculative, and which require a combination of
geometrical knowledge with a knowledge of phenomena, to be observed only by
diligent attention and refined instruments.’

* Toomer (1974) contains a plausible reconstruction. Ptolemy also constructed a table of chords
and his method is preserved. This will be described later.
Babylonian arithmetical methods continued to be used in the Greek world right up to Ptolemy’s
time. Indeed, Hipparchus used them to compute both solar and lunar longitudes while
developing his geometrical schemes (see Jones (1991a)).
DELAMBRE L'’histoire de I’astronomie ancienne, 1 (1817). Translation from Berry (1961).
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This is probably a bit over the top. Delambre tends to credit Hipparchus with
things that most modern scholars attribute to his successor, Ptolemy.

The distances of the Sun and Moon

In On Sizes and Distances, a work described by Pappus of Alexandria in his
commentary on Ptolemy’s Almagest, Hipparchus calculated the distances of the
Sun and Moon from the Earth, measured in Earth radii. His method was based
around the concept of diurnal solar parallax.

Just like the stellar parallax in a heliocentric universe (see Figure 2.6, p. 40),
the diurnal parallax is the change in the apparent position of an object (in this
case the Sun) as a result of the position of the observer. With stellar parallax it
is the position of the Earth in its orbit that causes the difference, whereas for
diurnal parallax it is the position of the observer on the Earth that is the cause.
Thus, the longitude of the object O in Figure 3.1 (which can be thought of as a
view from the celestial north pole) differs depending upon whether it is viewed
from P, or P,, two points at different positions on the Earth. Two observers are
not required to determine this difference, however, since the object O takes part
in the daily rotation of the heavens and its longitude will thus be affected by the
time of day at which measurements are taken. Thus, if one makes observations
of the sun 6 h apart, for example, the longitudes will not differ by the amount
due to the motion of the Sun alone (which can, in principle, be calculated), but
there will be a small error (the angle marked in the diagram) corresponding to
the diurnal parallax. The solar parallax is a direct measurement of the distance
of the Sun from the Earth in terms of the size of the Earth — the greater the
distance of the Sun the smaller the parallax — but unfortunately Hipparchus was
unable to measure it due to its very small magnitude.

While it is true that Hipparchus could not measure any solar parallax, he knew
this did not mean it did not exist. Accordingly, he assumed a solar parallax of 7/,
on the basis that if it were bigger he would be able to measure it. From Figure 3.1,

Py

Earth - O
P

Fig. 3.1. Diurnal parallax.
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Fig. 3.2. Hipparchus’ method for determining the relative distances of the Sun and Moon.

we see that if the marked angle is 7’, the distance to the Sun is 1/tan7’ ~ 490
Earth radii, and this is the value Hipparchus used. He then obtained, using data
from lunar eclipses, a lunar distance of 67% Earth radii (which is just over 10
per cent too big) and hence, a ratio of the Sun’s distance to the Moon’s distance
of about 7% (which is worse than Aristarchus’ estimate). He also obtained the
lunar and solar radii as % and 2% Earth radii, respectively, the former being
quite close to the modern value of 0.27, although the latter is about 50 times
too small.

The method Hipparchus used is described by Ptolemy and is illustrated
in Figure 3.2.° The centres of the Sun, Moon and Earth are S, M and E,
respectively, and the point G is on SH such that |[EG| = |EM|. The lines SA,
MC and E D are all perpendicular to S H and intersect the circles representing
the Sun, Moon and Earth in A, C and D, respectively. The lines ADH and ACE
are then good approximations to the lines tangent to the Sun and Earth, and Sun
and Moon. The angle g (the apparent radius of the Moon) was determined
through observation, and then Hipparchus determined the length of the Earth’s
shadow from the length of lunar eclipses. He took «/ 8 = 2 % , where previously
Aristarchus had used 2.

It is convenient to work in units of Earth radii so that |ED| = 1. First, we
note that in reality o and § are very small, so that to a good approximation
a/f =tana/tan B = |FG|/|MC|. Now, MB, ED and FG are parallel so
that |M B| + |FG| = 2|ED| = 2, and, hence,

|IBC| = |[MB| — [MC| =2 — |FG|— [MC| =2 — (% + 1) |IMC].

3.1)
Finally, we use similar triangles to obtain the result
1 _ |EA| _ |ES]| _ |ES|
|BC|  |CA| |MS| |ES|—|EM]

¢ PTOLEMY Almagest, Book V, 11. Further details can be found in Swerdlow (1969).



The motion of the Sun and precession 55

from which, using Eqn (3.1) and |MC| = |EM|tan 8 = |E M| sin 8, we obtain
|EM]|

ES| = .
(% + 1) \EM|sin g — 1

This expression is rearranged easily so as to give |E M| in terms of | E S|. Hip-
parchus substituted into this expression the vales |ES| = 490, 8 = 0; 16, 37°
and /B = 21, from which he obtained the result |EM| = 671 Earth radii.

The motion of the Sun and precession

Perhaps Hipparchus’ greatest contributions concerned the motion of the Sun. In
On the Length of the Year he claimed that the length of the tropical year (the time
between identical equinoxes or solstices) was constant, and he measured it at
365 + ;1 — 555 days (365 days 5 h 55 min 12 s) which exceeds the modern value
by about 6% minutes but, nevertheless, represents a significant improvement
over the previous value of 365% days. This probably was done by taking the
Babylonian value for the synodic month (i.e. 29; 31, 50, 8, 20 days) and using
the approximate equality given by the Metonic cycle (i.e. 19 years = 235
months) and then checking the result with observations.’

Hipparchus was the first to attempt to calculate the parameters needed for
the eccentric circle theory of Apollonius to agree with observations of the
Sun’s position, and his model of the solar motion, and the basic principles by
which the parameters for the model were deduced, remained standard until the
seventeenth century. The success of Hipparchus’ solar model was due to being
mathematically simple and yet very accurate. Provided the parameters in the
model are calculated accurately, the errors in the predicted solar longitudes
will not be detectable from naked-eye observations. Hipparchus’ method for
determining the parameters is illustrated in Figure 3.3, in which E is the Earth
and the Sun S rotates around an eccentric circle centre O with an angular speed
of w = 1 revolution per year ~ 59" 8” per day. The points Py, P», P3, and P4
represent the position of the Sun at the vernal equinox, the summer solstice, the
autumnal equinox and the winter solstice, respectively. In order to be able to use
the model to compute the position of the Sun, we need to calculate the longitude
A of the apogee A of the orbit of the Sun (the apogee is the point on the orbit
furthest from the Earth), which we choose to measure from the vernal equinox,
and the ratio of the eccentricity | E O] to the radius | O S| of the orbit of the Sun.

7 See Swerdlow (1979).
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Fig. 3.3. Hipparchus’ solar theory.

The technique Hipparchus used to do this can be described using modern
trigonometry as follows. First, consider the triangles EO P; and E O P,. The
sine rule gives

|OP| _ |OE| 0P| _ |OE|
— a d —

sin A sin o cosA  sinp’
From these equations it follows, since |O P;| = |O P;| = | O S|, that
sin o EO sin &
tan A = — and u = —. (3.2)
sin 8 |OS]| sin A

To obtain A and | E O|/| O S| from these equations, Hipparchus needed to know
the time between the vernal equinox and the summer solstice and that between
the summer solstice and the autumnal equinox, and from his observations he was
able to improve the known values for the lengths of the seasons. He measured
the time taken for the Sun to travel from P; to P, as 94% days and from P,
to P as 92% days (the times from P; to P4 and from P, to P; being 88% and
90% days, respectively). Hence, since /Pi1OP, = a + 8 +90°and /P,OP; =
a—B+90°,
189w

a+B+90° = > and 20 + 180° = 187w,
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simultaneous equations that can be solved for & and §. Finally Eqn (3.2) can
be used to obtain the needed parameters. Hipparchus obtained the values

|[EO| 1
0S| 24

which, given the rudimentary trigonometry at his disposal, are fairly impressive
(65° 25 39” and 1/24.17 are more accurate solutions to the equations). Modern
computations show that in Hipparchus’ time the true value of the longitude of
the Sun’s apogee was nearer to 66°."

Hipparchus made another hugely significant discovery concerning the Sun’s

A =65°30 and

motion. By comparing his own observations of the longitudes of certain stars
with those made by Timocharis some 150 years previously, he discovered the
phenomenon now known as the ‘precession of the equinoxes’.9 He noticed that
the sidereal year (the time for the Sun to return to a particular fixed star) was
slightly greater than the tropical year, and attributed this to a slow rotation of
the stars, from west to east, about the poles of the ecliptic. A consequence of
this is that the positions of the equinoxes on the celestial sphere gradually shift
with time. According to Ptolemy,lo Hipparchus gave the value of this motion
as 1° per century (and Ptolemy used this value), although the actual value is
about 1° every 72 years. This numerical inaccuracy was to have a significant
influence over subsequent theories since, when precession was measured more
accurately about 1000 years later, the differing values led many astronomers to
believe that the rate of precession was a variable quantity.

The motion of the Moon

The motion of the Moon is much more complex than that of the Sun and it
cannot be described by a simple eccentric circle mechanism. The reasons for
this were known to Hipparchus and are stated by Ptolemy:” they are that first
the Moon moves with varying speed in such a way that over the course of time it
achieves its maximal speed for every value of its longitude A, and, second, that

¥ More details of how Hipparchus arrived at his solar model can be found in Jones (1991b), and
Maeyama (1998) has analysed the effect of observational errors on the underlying parameters
and hence on the predictions of the model. According to Jacobsen (1999) the maximum error
in Hipparchus’ theoretical values for the Sun’s longitude was about 22'.

A theory developed in the 1920s that credits the Babylonians with the discovery of precession
was shown to be false by Neugebauer (1950).

PTOLEMY Almagest, Book VII, 2. Ptolemy stated that Hipparchus wrote a work (now lost)
entitled On the Displacement of the Solstitial and Equinoctial Points. Surprisingly perhaps,
Hipparchus’ discovery was mentioned by only a few Greek writers (see Dreyer (1953),

p- 203); it took on a much greater significance in later centuries.

PTOLEMY Almagest, Book IV, 2.

©

11
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the Moon does not move on the ecliptic, but instead has latitudes which vary
between £ 5° of the ecliptic in such a way that the Moon achieves its maximal
latitude for every value of A. Itis a simple matter to see that a model like that used
by Hipparchus for the Sun will lead always to the maximal speed occurring for
the same value of the longitude (at the perigee — the point on the orbit closest
to the Earth) and so cannot account for the first of these observations. The
second observation suggests that the orbit of the Moon is inclined at an angle
of about 5° to the ecliptic. However, if the line joining the intersections of the
Moon’s orbit and the ecliptic is fixed, the maximum latitude always will occur
for the same value of the longitude which is observed not to be the case. In
order for an eclipse to occur, the Moon must be near one of its nodes and thus
observations of eclipses can be used to give fairly accurate information on the
nodes of the Moon’s orbit. Lunar periods had been computed accurately by the
Babylonians, and Hipparchus, by comparing his own observations with earlier
ones, confirmed the Babylonian lunar periods as:”

1 synodic month = 29; 31,50, 8,20 days,
251 synodic months = 269 anomalistic months,
5458 synodic months = 5923 draconitic months.

Hipparchus’ lunar model is illustrated in Figure 3.4. It consists of an epicycle
carrying the Moon, M, the centre C of which rotates around a deferent circle,
the deferent—epicycle system being inclined at an angle of 5° to the ecliptic
and intersecting that circle in the two nodes A and B. The nodal line AOB
was made to rotate in order to account for the fact that the longitude of the
position of maximum latitude of the Moon changes gradually. The motion on
the epicycle ensures that the Moon’s speed is variable and by making the period
of revolution of M around the epicycle different from the period of C around
the deferent, we ensure that the longitude of the position of maximal speed
(which occurs when M is at its closest to Q) varies over time.

Hipparchus made the simplifying assumption that the motions in latitude
caused by the 5° angle of the orbit could be treated separately from the motion
in longitude due to the epicyclic system. This introduces only very minor errors.
The rotation of the nodal line thus becomes irrelevant for the longitude theory,
which is reduced to a simple two-dimensional deferent—epicycle system. In
order to use the theory, various parameters have to be computed. Thus, for the
longitude calculations, we require the rates of rotation of C around the deferent
and M around the epicycle as well as the ratio of the radii of the epicycle and

. See Swerdlow and Neugebauer (1984), I, p. 198.
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Fig. 3.4. Hipparchus’ lunar theory.

deferent, whereas for the latitude calculations we require simply the rate of
rotation of the nodal line. This latter parameter can be determined from direct
observations of eclipses. It turns out that in order to reproduce the observed
behaviour of the Moon, the nodal line must rotate approximately once every
18 years (the so-called ‘Saros period’).

The rates of rotation of the deferent and the epicycle also are easily obtained.
The former is simply the rate required for C to complete 1 revolution in 1
sidereal month which turns out to be about 13° 10’ 35” per day, and the latter
is chosen to ensure that the epicycle rotates once in each anomalistic month,
which implies a rate of 13° 3’ 54” per day. The final parameter, the ratio of the
radii of the epicycle and deferent, presents a far harder problem. Hipparchus
developed a geometrical method that enabled this ratio to be obtained from
three observations of the Moon" and he used it on two different sets of three
observations, obtaining different answers. There has been some debate as to
what value Hipparchus actually used" although, when the lunar model was
taken over later by Ptolemy, he computed a ratio of 5% : 60.

Hipparchus’ parameters were based on Babylonian observations of lunar
eclipses. As a result, the model worked well at full moons but, as Ptolemy
demonstrated 300 years later with observations of the Moon at other points in
its orbit, it did not work well away from the syzygies. With his solar and lunar
theories, Hipparchus created the first coherent theory of eclipses. Durations
could be determined about as accurately as they could be measured, but the
time at which the eclipse would occur was predicted less well. This situation
did not improve substantially until the work of Tycho Brahe at the end of the
sixteenth century.

iz See, for example, Pedersen (1974), p. 172.
See Neugebauer (1959), Toomer (1967), Pedersen (1974).
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The motion of the planets

Hipparchus did not achieve a satisfactory theory for the motion of the five
planets. Partly this is due to the fact that he, unlike many of his predecessors, had
examined sufficiently many observations over a period of many years to realize
that the motions were exceedingly complex, with, for example, retrograde arcs,
the lengths of which vary according to the position of the planet in its orbit. As
Ptolemy later put it:

... Hence it was, I think, that Hipparchus, being a great lover of truth, for all the
above reasons, and especially because he did not yet have in his possession such a
groundwork of resources in the form of accurate observations from earlier times as
he himself has provided to us, although he investigated the theories of the sun and
moon, and, to the best of his ability, demonstrated with every means at his
command that they are represented by uniform circular motions, did not even make
a beginning in establishing theories for the five planets, not at least in his writings
which have come down to us. All that he did was to make a compilation of the
planetary observations arranged in a more useful way, and to show by means of
these that the phenomena were not in agreement with the hypotheses of the
astronomers of that time."

Ptolemy and the Almagest

Ptolemy (Latinized as Claudius Ptolemaeus) was one of the great scholars of
antiquity, and mathematical astronomy was dominated by his ideas for nearly
1500 years following his death. Little is known of his life, but he taught in
Alexandria and quoted the results of his observations made between AD 127
and 141. He was responsible for a number of great works, each of which place
him among the most important ancient authors. The earliest of these is his
masterpiece of mathematical astronomy, the Almagest,]6 and others include the
Tetrabiblos (on astrology) and the Geography (on mathematical geography).
These works exercised a colossal influence over mankind for the next 2000
years. Ptolemy’s very wide range of interests is indicated by his works on other
subjects, e.g. music, optics, and logic. His Harmony, in which he described
musical consonances and their relationship to an underlying universal harmony,
was later an inspiration to Kepler.17

The name Almagest — which is the name by which his astronomical treatise
is usually known — is a corruption by medieval Latin translators of the Arabic

" PToLEMY Almagest, Book IX, 2. Translation from Toomer (1984).
; All quotations from the Almagest are taken from the translation by Toomer (1984).
See Martens (2000), Chapter 6.
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word for ‘the greatest’, and was given to the book long after it was written.
The original Greek title translates as Mathematical Synthesis or Mathematical
Collection and the work, which survives in the original Greek, is sometimes
referred to as the Syntaxis. Most of our knowledge of Greek astronomy is
derived from this work, which was originally written around AD150, translated
into Latin in the twelfth century, and first printed in the sixteenth century.
The huge success of the Almagest resulted in the loss of most of the work of
Ptolemy’s predecessors, notably that of Hipparchus.

Ptolemy was, as far as we know, the first person to show how to convert
observational data into numerical values for the parameters so as to make ex-
isting planetary models fit the observations. Unlike mathematical astronomers
before him, who used unspecified observational data, Ptolemy used specific
dated observations — indeed, many of the observations Ptolemy used, which
span over 800 years, are only preserved through his work. The rigour with
which Ptolemy developed his theories in the Almagest set a very high standard
for future astronomical works.

The model of the Solar System as set out in the Almagest will be described
in detail below. The various geometrical models he used are quite complicated
and so, before describing these, we will begin with a brief description of the
overall structure. In Ptolemy’s universe, the spherical Earth is situated at the
centre of the heaven, which is itself spherical. The Sun, Moon and planets all
orbit the Earth and as to their order, Ptolemy wrote:

... we see that almost all the foremost astronomers agree that all the spheres are
closer to the earth than that of the fixed stars, and farther from the earth than that of
the moon, and that those of the three [outer planets] are farther from the earth than
those of the other [two] and the sun, Saturn’s being greatest, Jupiter’s the next in
order towards the earth, and Mars’ below that. But concerning the spheres of Venus
and Mercury, we see that they are placed below the sun’s by the most ancient
astronomers, but by some of their successors these too are placed above [the sun’s],
for the reason that the sun has never been obscured by them [Venus and Mercury]
either. To us, however, such a criterion seems to have an element of uncertainty,
since it is possible that some planets might indeed be below the sun, but
nevertheless not always be in one of the planes through the sun and our viewpoint,
but in another [plane], and hence might not be seen passing in front of it, just as in
the case of the moon, when it passes below [the sun] at conjunction, no obscuration
results in most cases.”

Thus, Ptolemy decided to side with those astronomers who put Mercury and
Venus nearer than the Sun as this naturally separates those planets which can
be seen at any longitude with respect to the Sun and those which always remain

* PTOLEMY Almagest, Book IX, 1.
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Fig. 3.5. A simplified view of Ptolemy’s world system.

close to the Sun. Ptolemy’s authority was such that the order of the planets that
he proposed (Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn) was accepted
by virtually all subsequent astronomers until the sixteenth century.

In the Almagest, the motion of each celestial body is considered in turn
and, if all the models are put together, we get the world system sketched in
Figure 3.5. The diagram illustrates the epicyclic nature of the planetary models,
but not the many other elements used by Ptolemy to reflect more accurately the
observational evidence. An important thing to note is the fact that, for Mercury
and Venus, the line joining the Earth to the centre of their epicycles is the same
as that joining the Earth to the Sun, whereas for the outer planets, which may
appear anywhere with respect to the Sun, the radius connecting the planet to
the centre of its epicycle is parallel to the Earth—Sun line. Thus, it is evident
that the Sun does not simply orbit the Earth like the other planets, but has a
much more significant role. The motion of the Sun also plays a role in the lunar
theory.

As the Sun has an important function in the theories of all the heavenly bod-
ies, it is logical to begin with a solar theory, and this is what Ptolemy does. He
goes on then to consider the Moon and, finally, the planets. For each celestial
body, Ptolemy describes the type of phenomena that must be accounted for,
goes on to propose a geometrical model suitable for the purpose, shows how
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to use observations to derive the numerical values of the various geometrical
parameters and, finally, produces tables to enable others to determine the po-
sition of the body on a given date. Ptolemy obtained data easily for the Sun,
Moon, and all the planets from Venus to Saturn, but his over-reliance on the
poor available data for Mercury — much the most difficult of the then-known
planets to observe — led him to introduce a complicated geometrical device in
order accurately to reproduce erroneous data.

The Almagest is a complete exposition of Greek mathematical astronomy
divided into thirteen books. As Ptolemy himself says:

We shall try to note down everything which we think we have discovered up to the
present time; we shall do this as concisely as possible and in a manner which can be
followed by those who have already made some progress in the field. For the sake
of completeness in our treatment we shall set out everything useful for the theory of
the heavens in the proper order, but to avoid undue length we shall merely recount
what has been adequately established by the ancients. However, those topics which
have not been dealt with [by our predecessors] at all, or not as usefully as they
might have been, will be discussed at length, to the best of our ability.Iq

The first two books deal with the assumptions upon which the work is based
and with mathematical methods. Books III and IV deal with the motion of the
Sun and Moon, respectively. Book V contains a more advanced lunar theory
(and a discussion, among other things, of the construction of an astrolabe) and
in Book VI, Ptolemy presents his theory for eclipses. Books VII and VIII are
taken up largely with his star cataloguezo and, finally, Books IX—XIII deal with
planetary motions. The organization is strictly logical, each book dependent
only on those preceding it.

By late antiquity, the Almagest had become the standard textbook on as-
tronomy, and remained as such for more than 1000 years. Perhaps the only
scientific work to achieve greater dominance in history is Euclid’s Elements.
Ptolemy does not mention any physical interpretation of his system: his aim

;z PTOLEMY Almagest, Book I, 1.
In all, Ptolemy tabulated 1022 stars in 48 constellations, giving the longitude, latitude and
magnitude of each. He was very interested in the question of whether the stars move in relation
to each other and so he gave an extensive list of stars that lay in straight lines so that future
observations easily could reveal any relative motion that exists. There is evidence to suggest
that Ptolemy took the star catalogue of Hipparchus and added the correction in longitude given
by Hipparchus’ value for the precession. For the 2_% intervening centuries this would amount to
2° 40" which gives a good explanation of why Ptolemy’s longitude values are consistently
about 1° too small, since, had he used the correct value of the precession, he would have had to
add 3° 40'. However, there is no direct evidence that Hipparchus ever produced a systematic
catalogue of about 1000 stars as Ptolemy did. More details on this question can be found in
Evans (1987) and Shevchenko (1990) and an excellent historical survey of the debate on this
question, which has gone on for over 100 years, can be found in Evans (1998); (see also note
25 on p. 70).



64 The Ptolemaic universe

solely is to represent the heavenly phenomena by purely kinematic hypothe-
ses. He returned to this question in a later work, the Planetary Hypotheses.
However, Ptolemy did use physical arguments to justify his choice of a fixed
Earth at the centre of the Universe. He realized that the diurnal rotation of the
heavens could equally well be accounted for by a rotating Earth, as espoused
by Heraclides, but this was ruled out on the grounds that it would contradict
Aristotelian physics.

Mathematics in the Almagest

It is unclear who first introduced the Babylonian system of numeration into
Greek work, but certainly Hipparchus was familiar with the sexagesimal posi-
tional system. Sexagesimal numeration is used throughout the Almagest, with
minor modifications to the basic Babylonian system, though Ptolemy used the
traditional Greek form for fractions where precision was unnecessary. There
is very little mathematical formalism in the Almagest; instead, Ptolemy gives
detailed accounts of the procedures used in actual calculations. The formu-
las given below are therefore a modern shorthand way of representing what
Ptolemy wrote out in words. The main mathematical interest in the Almagest
comes from Ptolemy’s use of trigonometry, a subject developed by the Greeks
specifically for the solution of problems arising in astronomy.

The only trigonometric function used in the Almagest is the chord, and
Ptolemy constructs a table of chords in Book I. It is almost certain that such
tables existed long before Ptolemy (Theon of Alexandria tells us that both
Hipparchus and Menelaus had written works on chords) but Ptolemy’s table
is the first surviving specimen and his account of its construction is the first
treatise on trigonometry known to us. The Greek chord function is illustrated in
Figure 3.6. Ptolemy’s aim is to calculate the length of the chord AC for a given
angle «, denoted in Eqn (3.3) by ch« and, in order to facilitate the use of the
sexagesimal system, he used a circle of radius 60. Since one-half of the chord
divided by the radius is just the sine of half the angle «, this chord function is
related to the modern sine function through

cha = 120sin 3, (3.3)

though it should be remembered that the chord is a length, whereas the sine is
a ratio.

Ptolemy’s first step was to use well-known properties of regular polygons to
evaluate some special values of the chord function. In this way he obtained
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C

Fig. 3.6. The Greek chord.

ch36° = 37;4, 55, ch60° =1, 0;0,

ch72° =1, 10; 32, 3, ch90° =1, 24; 51, 10,
from the properties of the decagon, hexagon, pentagon and square, respec-
tively. Pythagoras’ theorem and the fact that the angle inside a semicircle is a

right angle21 show that ch?(180° — &) = 120%> — ch? «, and from this Ptolemy
determined

ch 120° =1, 43; 55, 23, ch144° =1,54;7,37.

Next, Ptolemy proved what is now known as ‘Ptolemy’s theorem’ but which,
since it is so elementary, probably dates from an earlier period. Using argu-
ments based on similar triangles Ptolemy showed that in a cyclic quadrilateral
(a quadrilateral inscribed in a circle) the product of the diagonals is equal to the
sum of the products of the opposite sides, or (see Figure 3.7(a))

|DB|.|AC| = |AB|-|DC|+ |AD|-|BC|.

Next, consider a cyclic quadrilateral with one side as diameter, as shown in
Figure 3.7(b). An application of Ptolemy’s theorem yields

ch B ch(180° — ) = 120 ch(B — a) + ch(180° — B)cha.

Using Eqn (3.3), we see that this is equivalent to the modern trigonometric
formula

sin(x — y) = sinx cosy — cosx siny,

where x = 8/2, y = a/2. In a similar way, Ptolemy derived the equivalent of
the formulas

o EucLIDp Elements, Book I, 47 and Book III, 31, respectively.
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Fig. 3.7. Ptolemy’s theorem.

sin(x + y) = sinx cosy + cosx siny

2sin’x = 1 — cos 2x.

With these formulas and the chords already computed, it is possible to construct
a table of chords in steps of 3° (or 3/2° or 3/4°, etc.). However, Ptolemy’s aim
was to construct a table of chords in intervals of 1/2° and he achieved this with
an ingenious argument: that for acute angles « and 8 with cha > ch g,

chae chpg
_—< —, (3.4)
o B

a result known to Aristarchus and, since he had previously calculated
ch2"=1;34,15,  ch3’ =0;47,8,
Eqn (3.4) implies that
%ch%o <chl® < %ch%o.
But to two sexagesimal places both ;—‘ ch %O and % ch %O are equal to 1;2, 50.
Hence, Ptolemy knew ch 1° and could compute

ch1®=0;31,25.

Ptolemy was now able to construct a table of chords from 1/2° to 180° in steps
of 1/2° (equivalent to a table of sines from 1/4° to 90° in steps of 1/4°) accurate
to two sexagesimal places.

With his table of chords, Ptolemy could use algorithms equivalent to the
modern formulas (following the standard convention that the side opposite
angle A is labelled a, etc.):
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sin A . b

SinA =

g, cosAEsin(9O°—A)=l—), tan A = = —.
c c coOsA a
Only right-angled triangles are solved in the Almagest, with oblique triangles
being decomposed into right-angled ones, and in this way Ptolemy can solve
any triangle (though somewhat clumsily by modern standards). Ptolemy’s style
throughout the Almagest suggests that this type of computation was fairly stan-
dard.

Of course, many of the astronomical calculations Ptolemy needed to perform
concerned the angular distances between celestial bodies or, in other words, the
positions of bodies on a spherical surface, for which spherical trigonometry is
appropriate. Here, too, Ptolemy could use his table of chords. The geometry of
the sphere, particularly with reference to astronomy, was one of the subjects
taught within the Pythagorean quadrivium — and the subject was well advanced
long before Ptolemy’s time — but spherical trigonometry really came to promi-
nence with the work of Menelaus of Alexandria in about AD100. The treatment
of spherical trigonometry in the Almagest is based largely on the Sphaerica of
Menelaus. In the first of three books, Menelaus introduced the concept of a
spherical triangle — a figure formed by three arcs of great circles on a sphere,
each arc being less than a semicircle — and proved some theorems about such
triangles analogous to those Euclid had proved for plane triangles. The second
book is concerned chiefly with astronomy and only indirectly with spherical
geometry, while spherical trigonometry was the subject of the third book.

Ptolemy’s use of spherical trigonometry is based on two results (see Fig-
ure 3.8(a)). Suppose we have a spherical triangle A B E and another great circle
intersecting the sides of this triangle (produced where necessary) at D, F', and
C as in the figure, then

SINCE - sinDF - sinBA =sinAE . sinCF . sin DB,
sSinCA.sinDF .- sinBE =sinAE - sinCD . sinBF.

Here, sin C E means the sine of the angle subtended at the centre of the sphere
by the arc C E, etc., and therefore is related directly to the Greek chord function.
There are two other similar relations that can be derived, but Ptolemy did not
mention this. The proof of this theorem rests upon the corresponding theorem
for plane triangles, which is still referred to as Menelaus’ theorem, although it
probably predates Menelaus. The theorem (which is proved by Ptolemy) states
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Fig. 3.8. Menelaus’ theorem (a) for spherical triangles, (b) for plane triangles, and
(c) Ptolemy’s use for right-angled spherical triangles.

(see Figure 3.8())), that

|CE|-|DF|-|BA| = |AE|-|CF|-|DB],
ICA|-|DF|-|BE| = |AE|-|CD|-|BF|.

.

As in the case of plane triangles, Ptolemy actually considered only right-angled
spherical triangles, in which two of the great circles meet at 90°. By subdividing
other triangles into two or more right-angled ones, he was able to solve them
using the above theorem.”

For right-angled spherical triangles, Menelaus’ theorem can be reduced to a
relationship between three quantities. Thus, in Figure 3.8(c), A BC is a spherical
triangle with right angle at C. The point A is the pole of the great circle P O, and
the arcs a, b and ¢ are extended to meet this great circle in the points P, Q and
D, respectively. From the second version of Menelaus’ theorem for spherical
triangles given above, using the facts that QP = CP = AD = 90°, we obtain

sin BC =sin QD - sin AB.

Since A is the pole of Q P, it follows that sin A = sin QD,23 and so this equation
can be written

sina = sin A sinc.
Similarly, Ptolemy used algorithms equivalent to the formulas

tana = sinbtan A, Ccosc = cosacosb, tanb = tanccos A.

z Details of Ptolemy’s procedures can be found in Pedersen (1974) and Katz (1998) as well as in
. the Almagest itself.
~ See, for example, Smart (1960).
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Fig. 3.9. The determination of the declination é and right ascension « of the Sun;
A is the vernal equinox and the Sun is at B.

As an example, consider Ptolemy’s determination of the declination é and right
ascension « of the Sun for a given ecliptic longitude A. In Figure 3.9, A is the
vernal equinox, the Sun is at B, and the angle ¢ is the obliquity of the ecliptic,
which Ptolemy took to be 23° 51’ 20”.** The first and last of the four formulas
listed above then show that

sind = sin& sin A, tano = tan A cos €.

Solar theory

After the mathematical preliminaries, Ptolemy discusses the motion of the Sun,
and here he uses exactly the same model as that developed by Hipparchus.
Ptolemy made some observations of the dates of the equinoxes so as to see
whether Hipparchus’ value for the length of the tropical year was still correct
after a 300-year period, and he concluded that it was and that it has the value
ascribed to it by Hipparchus, i.e. 365 days 5 h 55 min 12 s — about 6% minutes
too long.

Ptolemy also used his observations of the equinoxes to recompute the length
of the seasons and again found agreement with Hipparchus’ values of 94% days
for the length of the spring season and 92% days for the length of summer.
He thus obtained the same numerical parameters for the eccentric model of
the Sun, i.e. 65° 30’ for the longitude of the solar apogee as measured from
the vernal equinox, and 1/24 for the eccentricity of the orbit. The fact that
Ptolemy arrived at the same result for the solar apogee as Hipparchus had done

» In the middle of Book I of the Almagest, between his construction of a table of chords and his
discussion of spherical trigonometry, Ptolemy discussed the angle that the ecliptic makes with
the celestial equator, the obliquity ¢. He described how it can be calculated and claimed to
have found that 232° < ¢ < 23 % °. Since the value he attributes to Eratosthenes, 22/83 of a
right angle (23° 517 20”), lies in this range, this is the value he adopted (see Goldstein (1983)).
The actual value in Ptolemy’s time was about 10’ less than this (Wilson (1980), p. 63) and
Ptolemy’s failure to find a more accurate result, and hence perhaps discover the slow decrease
in the obliquity over time, can be explained by the crudity of his measuring devices (see
Britton (1969)).
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300 years previously led him and other ancient astronomers to believe that this
was an astronomical constant, whereas in fact, because of the precession of the
equinoxes, in Ptolemy’s time the true value was approximately 70°.7

Ptolemy used the geometrical solar theory to produce a table so that the
position of the Sun at a given time can be calculated. From Figure 3.10 it is
clear that, viewed from the Earth E, the Sun’s longitude measured from its
apogee A is « (the so-called true anomaly) and the mean anomaly « is known,
since the Sun § rotates uniformly around the centre of the eccentric circle, O,
completing 1 revolution in 1 tropical year. It is also clear that @ = o £ § (the
choice of sign depending on where the Sun is in its orbit) and so the position
of S can be found once § is known as a function of «. This is what Ptolemy
tabulates. Ptolemy calls 6 the prosthaphaeresis, which translates as the ‘amount
to be added and subtracted’ but, following medieval usage, it is more commonly
referred to as ‘the equation of centre’.

In general, the term ‘equation’ is used to refer to any angle that must be
added or subtracted from a mean motion in order to account for a particular
geometrical feature. This is Ptolemy’s style throughout — first the mean motions
are described, and then the various small corrections, the equations, are calcu-
lated. In the case of the Sun, there was one such equation, but for the Moon and
the planets there were more. Ptolemy’s quantitative solar theory was used not
only to determine the position of the Sun but was also an essential part of his
theory for the other planets.

Because the Sun moves non-uniformly around the ecliptic, which is itself
inclined to the celestial equator, the length of the solar day (the time between
local noon on successive days) is not constant. Thus, when calculating the
time difference in days between two events (such as a pair of eclipses) it is
necessary to correct for this variation. The effect, however, is quite small and,
until Ptolemy’s accurate quantitative astronomy, the resulting discrepancies

 Some authors, notably Newton (1977), claim that Ptolemy must have fudged his data so as to
reproduce Hipparchus’ parameter values, but in fact Ptolemy’s errors are not large when one
takes into account that an error of 6 h in the length of the spring season can lead to an error of
about 7° in the solar apogee (Peterson and Schmidt (1967), Maeyama (1998)). In fact, this
demonstrates that the great accuracy achieved by Hipparchus was fortuitous. North (1994)
goes so far as to say ‘a modern tradition that Ptolemy was little more than a plagiarist of
Hipparchus is hardly worth refuting’ and Hamilton and Swerdlow’s review of Newton’s work
in the Journal for the History of Astronomy, 12 (1981), 59-63 is deeply critical of the latter’s
approach. On the other hand, Britton (1992) has demonstrated convincingly that Ptolemy must
have had access to rather more observations than are mentioned in the Almagest and that he
sometimes used these selectively so as to reproduce agreement with predetermined values.
Sheynin (1973b) suggests that Ptolemy might have selected those observations he believed to
be the least susceptible to random or systematic error. Whatever the truth of the matter — and
the debate continues (see Thurston (2002), Gingerich (2002)) — astronomers from the
eighteenth century onwards certainly realized that Ptolemy’s observations were not to be relied
upon (see, for example, Wilson (1984), also note 20 on p. 63 of this text).
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Fig. 3.10. The prosthaphaeresis angle §.

(which never amount to more than about half an hour) were of little signif-
icance. Local time is determined by the position of the Sun with respect to
meridians (great circles perpendicular to the celestial equator) and so the sim-
plest way to appreciate the cause of the variation in the length of the day
is to introduce the concept of the equatorial mean sun, a point that trav-
els around the celestial equator at a uniform rate, once per tropical year.26
This then leads to the idea of the mean solar day, a concept Ptolemy
introduced.

Thus, in Figure 3.11, when the actual Sun is at S, the equatorial mean sun
will be at S which, because S moves non-uniformly around the ecliptic and o
is nonlinearly related to A (see Figure 3.9), will at different times of the year
be sometimes ahead of and sometimes behind A. The arc AS (the difference
between the right ascension of the equatorial mean sun and that of the Sun
itself) is known as the ‘equation of time’. The discovery of the equation of time
by Greek astronomers is just one example of the high level of sophistication
they achieved, as it was deduced as a theoretical consequence of Hipparchus’
solar theory, rather than from observation.

% The equatorial mean sun should not be confused with the mean sun, which is another
important astronomical concept. The latter rotates uniformly around the ecliptic once each
tropical year. The two clearly are related since they move around their respective circles at
precisely the same rate. In fact, the right ascension of the equatorial mean sun is equal to the
ecliptic longitude of the mean sun.
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Fig. 3.11. The cause of the equation of time. The Sunis at S and Sis the equatorial
mean sun.

Lunar theory

By virtue of its proximity, small irregularities in lunar motion are discernible
more easily than those of the planets, and Ptolemy was the first to discover that
the Moon was subject to an anomaly that had not been detected by Hipparchus.
As we have seen, Hipparchus treated the longitude and latitude theories for the
Moon separately, and Ptolemy did the same but, whereas the latitude theory
was not modified by Ptolemy, he found the longitude theory to be inadequate
away from the syzygies.

As far as concerns the [moon’s] syzygies . .. we find that the hypotheses set out
above for the first, simple anomaly is sufficient, even if we employ it just as it is,
without any change. But for particular positions [of the moon] at other sun-moon
configurations one will find that it is no longer adequate, since . .. we have
discgvered that there is a second lunar anomaly, related to its distance from the
sun.

Ptolemy showed that the discrepancy between the observed longitude of the
Moon and that predicted by Hipparchus’ theory depended on the position of the
Moon relative to the Sun and was greatest at the quadratures, i.e. half moons.
Thus, the Moon was subject to a second, independent irregularity in its motion
which has become known as ‘evection’.” In order to rectify the theory, Ptolemy
introduced a mechanism by which the Moon’s epicycle was brought closer to
the Earth at the quadratures than at new and full moon. This device had the
effect of incorporating the theory of the Sun into that for the Moon.

His solution is illustrated in Figure 3.12, and involves an epicycle on a defer-
ent which is no longer centred on the earth E but is instead placed eccentrically.
Moreover, the centre of the deferent O rotates around the Earth in a small circle
with a constant angular speed with respect to the position of the mean sun, S.
This has the effect of moving the apogee of the deferent A from east to west

37 PTOLEMY Almagest, Book V, 1.
“ The terminology is due to Ismael Boulliau in 1645.
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Fig. 3.12. Ptolemy’s lunar theory.

relative to the mean sun. The centre of the Moon’s epicycle C rotates around
the deferent circle in such a way as to keep the angles AES and SEC equal.
Thus, relative to the mean sun, C rotates once around the deferent in an anti-
clockwise direction (i.e. from west to east) in a synodic month, while O rotates
around a circle, centred at E, at exactly the same rate in the opposite direction.
Equivalently, if one considers the motion of the epicycle relative to the line EA,
C rotates around the deferent twice each synodic month. At the syzygies, C
and A coincide, whereas at the quadratures C and P coincide. It is clear that
in the lunar model, the deferent rotates with uniform speed around the Earth, a
point that is not its centre, and so Ptolemy was violating one of the fundamental
principles on which Greek mathematical astronomy had been built, i.e. uniform
circular motion. This radical shift, which Ptolemy did not even mention, was
later a major source of criticism.

From observations” Ptolemy was able to determine the relative sizes of
the circles in his lunar theory needed accurately to reproduce the phenomena.
Letting |E A| be 60 units, Ptolemy’s skill with trigonometry enabled him to
show that | O E| should be 10; 19 and the radius of the epicycle was 5; 15" In

* The claim that Ptolemy never made any lunar observations, in support of the general thesis of
) Newton (1977), is made by Goldstein (1982).
Details can be found in Pedersen (1974).
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the first version of his lunar theory, the Moon M was made to rotate around its
epicycle at a uniform rate with respect to the line EC B (see Figure 3.12) once
in each anomalistic month, exactly as in Hipparchus’ theory. The angle BCM
thus was a given linear function of time. In order to calculate the longitude of
the Moon for a given time, Ptolemy had first to compute the longitude of the
point C (the mean moon) from the mean lunar motion. Then he could calculate
the angle C E'S, since the solar theory provided the longitude of the mean sun.
Next, the distance |C E| can be computed by solving the triangle EOC and,
finally, /CEM (the prosthaphaeresis angle for the Moon) can be found by
solving the triangle CEM N

The overall effect of Ptolemy’s scheme was to leave the longitude at conjunc-
tion and opposition unchanged from that given by Hipparchus (since /CEA = 0
in these cases) and the theory accounted well for the observed position of the
Moon at the quadratures. However, Ptolemy found that there were still notice-
able errors at the octants — the points midway between the quadratures and the
syzygies — and decided that a further modification was necessary. He did this
by making the Moon rotate around its epicycle at a non-uniform rate with re-
spect to EC B, but uniform with respect to NC B’, where the point N is such
that E is the midpoint of O N. For this new scheme, it is the angle B'C M that
is a given linear function of time, so in order to compute the prosthaphaeresis
angle, Ptolemy first had to calculate /BCB’ = /NCE. This he could do by
solving the triangle NCE once the length |EC| had been determined. This
final peculiarity in Ptolemy’s lunar theory, which has no effect on the position
of the Moon at the syzygies or at quadrature and which was another source of
criticism by later astronomers, is known as prosneusis. In actual fact, the effect
of prosneusis was to make things better some of the time but worse at others.
Ptolemy did not test his final theory against new observations away from the
octant points.32

The lunar theory is not without its problems. One defect is that the ratio of the
maximum to minimum lunar distances implied by the model is 64; 15/34;7 ~
1.9 and so one should observe a doubling of the Moon’s apparent diameter as it
circles the Earth, whereas in actual fact a change of only 14 per cent is observed.
Another objection that was raised by later astronomers was the fact that the
epicyclic model seems to be incompatible with the phenomenon — mentioned

The calculations involved in applying this procedure are very laborious and in order to make
the application of his theory more straightforward Ptolemy produced (not just for the Moon but
for all the celestial bodies) tables of values corresponding to the modern concept of functions
of one or two variables. To make the computation of the tables less time-consuming he used
various methods of interpolation (see Pedersen (1974), van Brummelen (1994)).

® The accuracy of Ptolemy’s lunar theory is described in detail in Peterson (1969).



Planetary theory 75

by Aristotle in On the Heavens — that the same side of the Moon is always
visible to us. One plausible reason why neither of these ‘defects’ concerned
Ptolemy is that he regarded his theory simply as a device for computing the
latitude and longitude of the Moon rather than as a physical model of reality.
However, this seems to be contradicted by the way Ptolemy later treated his
models in the Planetary Hypotheses (see p. 81).

Two aspects of the lunar model are of particular interest. The coupling be-
tween Sun and Moon is a major shift from previous theories, and so is Ptolemy’s
abandonment of uniform circular motion. Prior to Ptolemy, uniform circular mo-
tion always had implied angular rotation around a circular path uniform with
respect to the circle’s centre. But in Ptolemy’s final lunar scheme, the Moon
revolves with uniform speed with respect to a different point. As we shall see,
many later astronomers objected to this, the most notable being Copernicus.

Having now described his theories for the motion of the Sun and Moon,
Ptolemy was in a position to give a detailed theory of lunar and solar eclipses,
which he did in Book VI of the Almagest. He began with a discussion of lunar
parallax, which is significant when making observations of the Moon, and from
his measurements he arrived at the conclusion that the radius of the deferent in
his lunar model is about 49 Earth radii. Once he had a value for the distance
to the Moon in terms of the size of the Earth, he was in a position to calculate
the distance to the Sun by reversing the procedure used by Hipparchus for
calculating the lunar distance from an assumed solar distance.” His final result
was that the mean distance to the Sun is 1210 Earth radii (corresponding to a
parallax of about 3"), which is about 19 times too small.

Planetary theory

Books IX—XIII of the Almagest are devoted to the motion of the planets, with
longitudes and latitudes being considered separately. For the longitude theories,
there are two anomalies to model. The first is manifested by the varying speed
of the planet as it travels round the ecliptic and is thus similar to the anomaly in
the Sun’s motion. This suggests an eccentric deferent as a suitable geometrical
scheme to account for the irregularity. The second anomaly is the phenomenon
of retrograde motion and this ultimately is linked to the motion of the Sun. The
superior planets always reach the centre of their retrograde arcs when they are

* See p- 54. Ptolemy’s method is described in detail in van Helden (1985). Unlike the procedure
adopted by Hipparchus, Ptolemy’s approach is extremely sensitive to errors in the measured
parameters.



76 The Ptolemaic universe

in opposition to the Sun, whereas this happens at conjunction for the inferior
planets. As Apollonius had shown, retrograde motion can be modelled by an
epicyclic theory, and so some combination of eccentric deferent and epicycle
suggests itself.

However, it turns out that this is insufficient by itself accurately to predict the
correct positions at which the retrograde motions begin and the correct angular
widths of the retrograde arcs.” To solve the problem, Ptolemy introduced a fur-
ther modification to Apollonius’ scheme and separated the centre of the deferent
circle from the centre of uniform rotation. Thus, he introduced a new point — the
equant — about which the centre of the deferent rotated with uniform angular
speed. Nowhere does Ptolemy state how he devised this construction, but it
works astonishingly well — a Ptolemaic equant produces planetary longitudes
differing from modern theory by less than 10" of arc, even for the compara-
tively large eccentricity of Mars. The discovery of the equant mechanism thus
represents one of the major achievements of Greek mathematical astronomy.35
Brilliant it may have been, but the incorporation of the equant introduced a
major problem into the science of astronomy because it violated the principle
of uniform circular motion. To Ptolemy, it clearly was more important to repro-
duce accurately the phenomena than to stick rigidly to accepted philosophical
dogma. Others did not necessarily share Ptolemy’s attitude and the status of the
equant was one of the main concerns of future astronomers.

Although Ptolemy described his theories for the inferior planets first, it is
perhaps more helpful to begin with his scheme for the superior planets — Mars,
Jupiter and Saturn — since the Mercury theory is relatively complicated. The
geometrical model that Ptolemy finally arrived at is shown in Figure 3.13. Each
planet P is carried round a deferent circle, centre O, on an epicycle, centre C,
which rotates in the same sense as the motion of C around the deferent. Just
as in the theory of the Moon, the Earth E is not situated at O, and the distance
between the Earth and the deferent centre | E O| is known as the ‘eccentricity’
of the model. The motion of C around the deferent is uniform with respect to
the new point Q — the equant — which is chosen so that O bisects E Q.36 The
mean longitude A (measured from the vernal equinox V) increases at a uniform

Z: A nice explanation of why this is the case is given in Evans (1984).

" Did Ptolemy devise it? It is not possible to say with certainty and he certainly does not claim
explicitly that it is his idea. On the other hand, Ptolemy is good at giving credit where credit is
due and he does not mention anyone else as the discoverer of the equant idea. For a strident
defence of the idea that this construction was not due to Ptolemy, see Rawlins (1987).

It is unclear as to why Ptolemy chose to put the centre of the deferent exactly equidistant from
the Earth and the equant. It seems most likely (see Wilson (1973), Pedersen (1974)) that the
observations suggested that this was the best position for the Venus model and he extended it
to the superior planets by analogy.
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Fig. 3.13. Ptolemy’s theory for the superior planets.

rate, with the epicycle rotating once around the deferent in the time it takes the
planet to make one circuit around the ecliptic (its zodiacal period), i.e. 687 days
for Mars, 11.86 years for Jupiter and 29.46 years for Saturn. The motion of the
planet around its epicycle is uniform relative to the line QC, so that the angle &
in Figure 3.13 (the mean epicyclic anomaly) increases uniformly with time ¢.

For each of the superior planets, observations show that the zodiacal and
synodic periods, T; and 7}, respectively, satisfy (see Table 1.2, p. 9)

1 1 1

+ — 5
. T, T
where T is the tropical year. In order to incorporate this feature into his model,
Ptolemy made the planet rotate once around its epicycle each synodic period.

We have then (ignoring irrelevant constants) A = ¢/ T, and i = ¢/ T, and, hence,
the longitude of the mean sun S is given by

t/T =x+ [

Some elementary geometry reveals that this ensures that the line C P is always
parallel to the line connecting the Earth E to the mean sun. The point A at
which the line £ O Q extended intersects the celestial sphere is the apogee of
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the deferent, and in Ptolemy’s model it is assumed fixed with respect to the stars.
In other words, its longitude A, increases slowly due to the effect of precession.

Finally, Ptolemy needed to determine the relative dimensions of his model,
and he found that, with a deferent radius of 60, the required double eccentricities
were given by |E Q| = 12 for Mars, |E Q| = 5; 30 for Jupiter and | E Q| = 6; 50
for Saturn. The values Ptolemy used for the radii of the epicycles were 39; 30
for Mars, 11; 30 for Jupiter, and 6; 32 for Saturn. By using a complicated series
of trigonometrical calculations, Ptolemy could then compute the true longitude
of the planet (the angle V E P in Figure 3.13) at any given time.

The above geometrical arrangement is inappropriate for the inferior planets
(Mercury and Venus) since they follow the Sun as it travels around the heavens,
never deviating from it by more than about 29 and 47°, respectively. The mean
positions of these planets are the same as that of the Sun, and so in Ptolemy’s
models for the inferior planets the centre C of the epicycle rotates uniformly
around an equant Q, such that QC is parallel to the line connecting the Earth
E to the mean sun S. Ptolemy’s model for Venus is shown in Figure 3.14, and
it can be seen that, apart from the different treatment of the coupling to the
motion of the Sun, the scheme has the same essential features as his theories
for the superior planets. The epicycle is carried around a deferent, the centre O
of which is not the Earth, and the motion is uniform with respect to an equant
QO which again is chosen so that O is the midpoint of E Q. It is interesting to
note that in his model for Venus, Ptolemy in effect introduced an equant for
the motion of the Sun, something he had not found to be necessary in the solar
theory itself. He was, of course, unaware that the solar deferent and the deferent
of Venus represent one and the same motion — the rotation of the Earth around
the Sun. The apogee of the deferent A is assumed fixed with respect to the stars,
exactly as before.

With a deferent radius of R = 60, the epicycle’s radius was taken to be
r = 43; 10 and the double eccentricity as |E Q| = 2; 30. The required size of
the epicycle can, at least approximately, be determined from the maximum
elongation (i.e. angular distance from the Sun) of the planet. Assuming zero
eccentricity so that E and O coincide, the maximum elongation 8 occurs when
/O PC is aright angle, i.e. when r/R = sin 6. Ptolemy’s values give

4310

6 = sin ~ 46°,

in agreement with the value given by the Roman writer Pliny in AD first century.
The effect of a non-zero value for the eccentricity on this simple argument is,
however, quite complex.
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Fig. 3.14. Ptolemy’s theory for Venus.

When it came to Mercury, however, Ptolemy found that he could not use
the same geometrical scheme. Of the planets known to Ptolemy, Mercury is by
far the hardest to observe, and its orbit deviates significantly from a circle. The
observations Ptolemy used for his theory of Mercury — some of which were very
inaccurate — led him to believe that Mercury’s orbit had two perigees. Thus, he
came up with a geometrical device that modelled this phenomenon, and this is
shown in Figure 3.15. The line £ Q O points to the apogee of Mercury’s orbit,
the longitude of which is fixed with respect to the stars, and the equant Q is
the midpoint of E O. The centre of the epicycle C rotates uniformly around the
equant, following the mean sun, in such a way that it lies always on a deferent
circle, the centre D of which is rotating in the opposite sense around a small
circle centred on O. The rates of rotation are chosen so that the angles DO A
and A QC always are equal. This construction causes C to move in an oval orbit
that has two points of closest approach to the Earth, P; and P;. For a deferent
radius of 60, Ptolemy calculated the radius of Mercury’s epicycle as 22; 30
and | E Q] as 6; 0. Based on the simple argument described above for Venus, an
epicycle radius of 22; 30 corresponds to a maximum elongation of 22°, which is
again the value quoted by Pliny.37 In his later work, the Planetary Hypotheses,

¥ Detailed discussions of the empirical basis for Ptolemy’s theories of the inferior planets can be
found in Wilson (1973), Swerdlow (1989), and the accuracy of the Mercury model is
investigated in Nevalainen (1996).
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actual path of C

Fig. 3.15. Ptolemy’s theory for Mercury.

Ptolemy justified the increased complexity of the motion of Mercury, as well
as that of the Moon, by pointing out that these two celestial bodies are closest
to the Earth and, hence, closest to the changeable air.

The planetary theories described above are all dedicated to the determination
of longitudes; latitudes are treated separately in Book XIII of the Almagest.
Unlike the simple latitude theory for the Moon, Ptolemy’s theory for planetary
latitudes is cumbersome and complicated. This is hardly surprising since the
plane of the orbit of the Moon passes (very nearly) through the centre of the
Earth, whereas the planes of the planetary orbits pass through the centre of
the Sun, and Ptolemy was attempting to construct a geocentric latitude theory.
For the superior planets, Ptolemy accomplished this by tilting the deferent with
respect to the ecliptic and also inclining the plane of the epicycle with respect
to the deferent. Now, for these planets we know that the motion of the planet
around the epicycle actually is modelling the motion of the Earth around the
Sun, so the epicycle should be in a plane parallel to the ecliptic. Ptolemy had no
such knowledge, of course, and so had to determine two inclinations for each
planet. The system Ptolemy used for the inferior planets was similar, except
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in this case the inclination of the deferent with respect to the ecliptic was an
oscillatory function of time.”

The Almagest represents the culmination of 500 years of Greek mathemat-
ical astronomy, and the result is ingenious, mathematically sophisticated and
tolerably accurate. It formed the foundation for subsequent developments and
for the teaching of astronomy, and was the dominant influence in theoretical as-
tronomy until the sixteenth century. As a scientific theory it is still ad hoc in that
it explains only those phenomena built into the model, and new observations
can be accommodated simply by tweaking the parameters.

The Handy Tables and the Planetary Hypotheses

After writing the Almagest, Ptolemy wrote two further astronomical works, the
Handy Tables and the Planetary Hypotheses. The former contains the proce-
dures that need to be followed to compute the positions of heavenly bodies from
Ptolemy’s theories, but with no discussion of the theoretical models on which
they are based, while the latter contains his physical interpretations of the math-
ematical models developed in the Almagest. In the Planetary Hypotheses, parts
of which have only become well known in the West fairly recently,39 Ptolemy
made two assumptions. The first was that the geometrical devices he had devised
accurately to predict the observed phenomena actually exist in the heavens. The
second was that he assumed there were no empty spaces between the mech-
anisms for each of the heavenly bodies. As some of the geometrical schemes
Ptolemy had used in the Almagest contradicted Aristotelian natural philoso-
phy — notably the equant construction — the first of his assumptions came under
repeated attack during the Middle Ages. The second was not so controversial,
but Ptolemy himself actually violated it by leaving an empty space between
Venus and the Sun. Many later astronomers repeated Ptolemy’s calculations to
determine the dimensions of the Universe and managed, one way or another,
to remove this void from the theory. Ptolemy’s world view was as influential in
the field of cosmology as the Almagest was in theoretical astronomy.

In the Planetary Hypotheses, Ptolemy deliberately simplified some of his
geometrical constructions so as to make them easier to understand; some of
the simplifications just take the form of approximating parameters by more
convenient values, but there are also some changes of substance, notably in the
latitude theories for the planets, which actually were improved in the process.

* Details of Ptolemy’s latitude theories for the planets can be found in, for example, Pedersen
2 (1974), Riddell (1978), Jacobsen (1999).
See Goldstein (1967).
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Fig. 3.16. Ptolemy’s physical interpretation for a superior planet.

A schematic illustration of Ptolemy’s physical interpretation of the motion of
a superior planet is shown in Figure 3.16. The figure depicts four spherical
surfaces: S; and S4 centred on the Earth E (the centre of the Universe) and S,
and S3 centred on O (the centre of the deferent (see Figure 3.13)). The planet P
is situated on a sphere (the epicycle) which is confined to the spherical annulus
between S, and S3. The shaded regions between S; and S, and between S
and Sy are filled with the ether, which serves to transmit the required motion
between the various spheres.

If we consider the diagram as representing the motion of Saturn, then Ptolemy
now could fit his whole planetary scheme together without spheres intersecting
simply by placing Jupiter inside Ss, and so on. On the assumption that the
spheres fit as closely together as possible, we thus have a method for calculating
the size of the Universe and this was done by Ptolemy (see Table 3.1).40 In the
Almagest, Ptolemy had already calculated the distances of the Sun and the
Moon, and so he began with the Moon and worked outwards arriving at a
maximum distance for Venus of 1079 Earth radii. But the minimum distance
to the Sun was 1160 Earth radii, and so Ptolemy was forced to leave a gap
between the spheres of Venus and the Sun.” Working outwards from the Sun,
he arrived at a distance to the outer sphere of Saturn of 19 865 Earth radii
(about 120 000 000 km in modern units, less than the true value for the radius
of the Earth’s orbit) and he rounded this to 20 000 Earth radii as the distance

j? The figures are quoted from Goldstein and Swerdlow (1970).
Ptolemy was aware that minor adjustments to some of the measured parameters could be used
to close the unwanted gap, but he did not bother to make them (see van Helden (1985), p. 23).
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Table 3.1. Greatest and least distances,
measured in Earth radii, according to Ptolemy.

dmin dmax

Moon 33 64
Mercury 64 166
Venus 166 1079
Sun 1160 1260
Mars 1260 8820
Jupiter 8820 14187
Saturn 14187 19 865
Fixed stars 20000

to the fixed stars. From a modern perspective, Ptolemy’s value for the size of
the Solar System is hopelessly wrong but, seen in the context of his own time,
he was actually the first person to suggest that the dimensions of the Universe
were unimaginably large. The number of spheres necessary to construct the
whole system was thirty-four, and Ptolemy thus claimed that he had produced
a simpler system than any of his predecessors. Despite its many deficiencies,
Ptolemy’s cosmology reigned supreme — with modifications as to its detail —
until the demise of geocentric astronomy in the seventeenth century.

No Greek astronomer after Ptolemy made any significant advance on
Ptolemy’s work. People were becoming more sceptical about the value of this
type of endeavour, and working conditions for those involved in rational sci-
entific enquiry gradually deteriorated. Commentaries on the Almagest were
written in AD fourth century by Theon of Alexandria and by Pappus, but they
added little. Progress in mathematical astronomy had to wait until the revival
of scholarly activity in the Islamic civilization that grew up following the death
of Mohammed in AD 632.
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Developments in geocentric astronomy

Astronomy in India

Indian astronomy has a rich history, right up to modern times." The Vedic
religion, from which modern Hinduism has developed, is one of the earliest
religions recorded in written form (the language being Sanskrit) and the Vedic
literature contains many references to the heavens and their divine qualities. The
earliest astronomical text—the Vedariga Jyotisa — dates back to around 1200 BC.
It is clear from the use of numerical periods determined by the Babylonians that
the two civilizations were in contact and, from the use of epicyclic mechanisms,
that at some time between Hipparchus and Ptolemy aspects of Greek astronomy
were transmitted to India, though the precise mechanism is uncertain. That this
happened before Ptolemy can be deduced from the fact that the lunar theories of
the Hindus show no evidence of Ptolemy’s modifications to Hipparchus’ theory.

Two different approaches are evident in early Hindu astronomy. First, there
were arithmetical methods similar to those developed by the Babylonians and,
second, there were the trigonometric methods based on Greek geometrical con-
structions. Examples of the former type can be found in the Parica Siddhantika,
written in about AD 550 by the Indian philosopher, astronomer and mathemati-
cian Varaha Mihira. Just as in Babylonian astronomy, these Hindu models could
be used to compute longitudes at discrete times and underlying the techniques
were zigzag functions, but the actual formulation was quite distinctive. In order
to illustrate these Indian arithmetic models we will consider the motion of the
Moon.”

" A detailed account of the history of mathematical astronomy in India from its beginnings
through to the sixteenth century is given in Pingree (1975) and Balachandra Rao (2000)
provides a comprehensive summary of the algorithms that were actually used to determine the

N positions of the Sun, Moon, and planets.

" For further details, including theories for Jupiter and Saturn, see Abraham (1982).
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The anomalistic month (the average time it takes for the Moon to return to
the same speed) was taken to be 248 padas (a pada being one-ninth of a day).
This value is extremely accurate (see Table 1.1, p. 7) and was also used by
Babylonian astronomers. This month was divided into two equal parts, with
the Moon’s speed increasing during the first half and decreasing during the
second. For the first half, the longitude of the Moon after each pada was given
(in degrees) by the quadratic formula

1094 +5(p — 1)
rMp)=p (1 + 3780
and then for the second half of the anomalistic month by
2414 —5(g — 1)
3780 )’

Since there are 9 padas in 1 day, the daily motion of the Moon in the first half
of the month is given by

), p=0,1,...124,

k(124+q):k(124)+q(1+ g=0,1,...124.

D(p) = A(p+9) = A(p) = L 4 P
p)=Ap PP="10 "1

an increasing linear function of p, and so the difference between successive
daily motions is constant (D(p + 9) — D(p) = 3/14). A similar calculation for
the second half of the month shows that the daily motion is then a decreasing
linear function of ¢ (though there are minor complications around the end and
the middle of the month) and so the effect of the model is to produce a zigzag
function for the variation in the daily motion of the Moon. The maximum and
minimum daily motions according to this theory are 14°39'9” and 11°42’,
respectively.

Early Indian astronomy based on Greek geometrical models is best known
through the Sirya Siddhanta, one of several similar works of unknown author-
ship written around the fourth century. The basic mechanism of Hindu plane-
tary astronomy in works such as this was an epicycle on an eccentric deferent,
which is consistent with the idea that the knowledge came from Greece between
the time of Hipparchus — who had no geometrical planetary theory — and of
Ptolemy — who used epicycles on eccentric deferents together with the equant
construction.” However, we also find an imaginative modification that seems
to have been an indigenous invention. In Aryabhata’s Aryabhatiya (written in
about 500), the author makes the eccentricity of the deferent and the radius of

A thorough discussion of the transmission of Greek planetary models to India can be found in
Pingree (1971). The parameters that actually were used in these geometrical models were
probably of Babylonian origin (see, for example, Abhyankar (2000)).
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the epicycle vary periodically between two (not greatly different) values. Hindu
latitude theories were very basic, indicating that the complex latitude theories
of the Almagest did not develop over a long period prior to Ptolemy.

The biggest influence of the Indian civilization on the evolution of Western
mathematical astronomy, however, came not from the arithmetical or geomet-
rical models that were employed, but from the development of new mathe-
matical tools. When using the Greek chord function in astronomical calcula-
tions, astronomers often had to deal with half-chords of double angles. Indian
mathematicians realized that it would be simpler to tabulate the half-chords
themselves; these are our modern sines (though, of course, they still referred
to lengths rather than ratios). The Aryabhatiya contains a description of the
construction of a sine table for the angles 0 to 90° in steps of 3°45’, and
Brahmagupta (seventh century) devised fairly accurate methods of interpola-
tion based on what we would now call ‘second-order differences’. Of perhaps
even greater long-term significance was the emergence of the decimal place-
value number system for integers, including the use of a symbol for zero. The
origins of this system are unclear, but it was in use in India in the eighth century.

Islamic astronomy

Ptolemy was one of the last great scientists of antiquity, and in the centuries
following his death Greek scientific activity declined in both quality and quan-
tity. When the Muslims conquered the lands surrounding the Mediterranean
in the seventh century, they would have found the records of 1000 years of
Greek intellectual thought, but they would not have encountered much ongoing
scientific inquiry.

After a couple of centuries of rapid expansion, the Islamic civilization set-
tled down and scholarship began to flourish. From the eighth to the fourteenth
centuries, most of the advances in astronomy were achieved by scholars in the
Middle East, North Africa, and Moorish Spain. This work crossed religious and
ethnic boundaries, with contributions from, among others, Arabs, Iranians, and
Turks, and from Muslims, Jews, and Christians. Islamic scholarship explored
all branches of knowledge and built on not only the traditions of Greek science
and philosophy, but also those of Persia, India, central Asia, and to some ex-
tent, China. The unifying feature of this endeavour was the Arabic language,
which was very flexible so that it was possible for translators to create the

* Described in Katz (1998), pp. 212-15, for example.
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necessary technical vocabulary. Greek works were translated into Arabic from
the late eighth century onwards, including those of Galen, Aristotle, Euclid,
Archimedes, and Apollonius. The Almagest was translated several times, an
excellent translation being made by Ishaq ibn Hunain — the son of one of the
first leaders of the Academy set up in Baghdad called the ‘House of Wisdom’ —
and this was edited later by Thabit ibn Qurra in the latter half of the ninth cen-
tury. Ptolemy’s Planetary Hypotheses, Tetrabiblos, and substantial parts of the
Handy Tables were also translated.’

The Islamic civilization contributed a great amount of theory, computation
and instrumentation to astronomy, but it did not provide many observations
for later use because, by and large, Islamic astronomers followed Ptolemy’s
procedures for obtaining planetary parameters from a limited number of selected
observations. Many astronomers produced works, each known as a zij, a word
used originally to mean ‘a set of astronomical tables’ (of which the Handy
Tables was the prototypical example) but which was later used to refer to any
astronomical treatise. Many of these works survive to this day.6

Perhaps the first zij to appear in Arabic was based on the Siddhanta of Brah-
magupta, which was probably translated in the 770s. It is, however, doubtful
that the Arabs would have had the necessary expertise to make much use of the
tables until they had become familiar with Greek geometrical methods. Other
Sanskrit works such as the Aryabhatiya of Aryabhata were translated around
this time and would have been the authority on astronomy until the Greek works
became available. From these texts the Arabs became aware of Hindu mathe-
matical advances in areas such as trigonometry and numeration.

Arabic mathematics came of age with the work of al-Khwarizmi, an early
member of the House of Wisdom. His great influence on the development of
mathematics comes from his Hisab al-jabar wa-I-mugabala, written in about
825, which contains the beginnings of the subject now known as algebra,
al-jabar referring to the operation of taking a subtracted quantity from one
side of an equation to the other and al-muqgabala referring to the operation of
subtracting the same quantity from both sides of an equation. Al-Khwarizmi is
also responsible for introducing the Hindu decimal numeration system, includ-
ing a symbol for zero, to the Arabic speaking world. He described algorithms
(the word being derived from his name) for using these numbers to perform the
basic operations of arithmetic. Al-Khwarizmi compiled a zij containing tables
constructed largely from Ptolemy’s theories, though also incorporating aspects

* The period of translation is described in detail in O’Leary (1948), Chapter XII (see also
. Kunitzsch (1974), Toomer (1984), p. 2, for more information on translations of the Almagest).
They have been catalogued by Kennedy (1956b).
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of Indian and Persian astronomy. This work set the style for future Islamic as-
tronomy and was influential in Europe in the Middle Ages after it was translated
into Latin in the twelfth century by Adelard of Bath.

The Almagest was very difficult to get to grips with, and a number of new
manuals of theoretical astronomy appeared, one of the most influential of which
was by al-Farghani (known in Latin as Alfraganus), who was employed by the
caliph al-Ma’miin, the ruler in Baghdad between 813 and 833. Al-Farghani’s
work usually is known by the title Elements of Astronomy and was a com-
prehensive summary of Ptolemaic astronomy that was entirely descriptive and
non-mathematical. It became very popular as a textbook and was the primary
medium by which knowledge of Ptolemy’s work spread until the sixteenth cen-
tury. Al-Farghani recomputed the distances of the planets from the Earth based
on the parameters in the Almagest, exactly as Ptolemy had done in the Plan-
etary Hypotheses. He arrived at values similar to Ptolemy’s but, conveniently,
the philosophically unacceptable gap between Venus and the Sun had disap-
peared. It was Gerard of Cremona’s translation into Latin of al-Farghant’s work
in the twelfth century that was the main source of knowledge about Ptolemaic
astronomy Dante used when writing his Divine Comedy, and John of Seville’s
translation a few decades earlier formed the basis of Johannes de Sacrobosco’s
On the Sphere, which went through more than 200 editions and was used at
universities throughout Europe until the early seventeenth century.7

Technical modifications to Ptolemaic astronomy

In Ptolemy’s theory, the motion of the Sun plays a fundamental role in deter-
mining the motion of all the other heavenly bodies, and so all of the calculations
in the Almagest are based on the parameter values Ptolemy used for his solar
theory. Ptolemy failed to improve on the values of Hipparchus and so used
23°51'20" for the obliquity of the ecliptic, 365; 14, 48 days for the length of
the tropical year, 65° 30’ for the longitude of the solar apogee, and 1° per century
for the value of precession. Islamic astronomers had one great advantage over
their Greek predecessors: they could compare their observations with those of
others who had lived over 1000 years previously. Thus, they had a much better
chance of discovering small irregularities only discernible from observations
collected over a long period of time. Two of these irregularities discovered in the
ninth century were the variation in the obliquity of the ecliptic and the change

7 The size of the cosmos, as described by al-Farghant, can be found in a number of medieval
works of popular literature (see van Helden (1985), pp. 37-9).
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in the ecliptic longitude of the solar apogee, and the astronomers responsible
for the discoveries were al-Battani (known in Latin as Albategnius), and Thabit
ibn Qurra, two of the most influential of the early Islamic astronomers. Both
were quoted by a number of later Latin writers.

The interest of Islamic astronomers in the variability of the obliquity goes
back to the mid eighth century — which is quite surprising, since the change
(approximately 1/2” per year) was of no practical use. Al-Battani measured the
obliquity in his day as 23° 35’, which is in line with modern theory, and Thabit
used 23° 33'. If the value used by Ptolemy was accurate, and most astronomers
believed that it was, the obliquity clearly had decreased since the second century,
but the implied rate at which it had changed was exaggerated by the fact that
Ptolemy’s value was about 10’ too large.

In 831, Thabit ibn Qurra found the longitude of the solar apogee to be 82° 45
and recognized that the change in apogee could be attributed to precession.
Since the increase in longitude of the stars since Ptolemy’s time as a result
of precession was similar to the change in longitude of the solar apogee, he
believed that the solar apogee, like that of all the planets, remains fixed with
respect to the stars, and Thabit thus used the sidereal year rather than the tropical
year as the basic period of his solar theory.8 Similar conclusions were reached
by al-Battani, who found 82° 17’ for the solar apogee. Both astronomers also
found new values for the eccentricity of the deferent of the Sun and constructed
new solar tables.

Due to the fact that different astronomers had computed different values
for precession, and in particular due to the inaccurate value used by Ptolemy,
Thabit believed that the precession of the equinoxes was not a linear function
of time as Ptolemy had supposed, but that it varied periodically. This led him to
propose his influential ‘trepidation’ theory, a consequence of which is that, not
only is the rate of precession variable, but the obliquity of the ecliptic is also a
periodic function of time.”

Thabit’s theory is illustrated schematically in Figure 4.1. The celestial equa-
toris ARB, A and B being diametrically opposite points, and the fixed mean
eclipticis AQ B, Q being midway between A and B. The mean ecliptic makes
an angle ¢ = 23° 33’ with the equator (it is exaggerated greatly in the figure).

* The solar apogee actually is not fixed with respect to the stars but possesses a very slow steady
motion. This was discovered in the eleventh century (see p. 97).
His theory is described in his treatise entitled On the Motion of the Eighth Sphere, that has been
translated into English with a commentary by Neugebauer (1962) and is discussed in Goldstein
(1964). Thabit was not the first to suggest that the rate of precession was variable, theories
incorporating non-constant precession were known to, for example, Theon of Alexandria
(fourth century) and Proclus (fifth century) and were incorporated into early Indian astronomy
(Pingree 1972).
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Fig. 4.1. Thabit ibn Qurra’s theory of trepidation.

Two small circles, each with a radius of 4° 18’ 43", are centred at the points A
and B and a point C is chosen on the circumference of the circle centred at
A, with the diametrically opposed point D on the other small circle. The great
circle C QD is the movable ecliptic and, as C rotates around A, the ecliptic
plane oscillates, Q and Q' being fixed points. The points at which the movable
ecliptic crosses the equator are the equinoxes, and the position of the equinox,
the mean position of which is A, varies between E and E’. Similarly, the oblig-
uity has its mean value when the equinox is at A and has its maximum value &'
when the equinox is at E’. The stars have fixed longitudes with respect to the
movable ecliptic.10

The theory of trepidation was used extensively by later Islamic and medieval
astronomers, but it was not to everybody’s liking. Al-Battani devoted a special
chapter of his zij to refuting it, instead arguing for the traditional linear theory
of precession at 1° in 66 years, or 54.5” per year. Al-Battani’s zij is regarded by
some as one of the most important works on astronomy between Ptolemy and
Copernicus, and was translated into Latin by Robert of Chester in the twelfth
century. The first part is modelled closely on the Almagest, the second part on

10 Implementing such a scheme in astronomical tables was no easy task and it appears that most
astronomers, Thabit included, used procedures which only approximated the true geometrical
picture (see North (1967)).
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the Handy Tables. As was fairly typical in Islamic astronomy, the solar theory
of Ptolemy was refined considerably, but the lunar and planetary theories were
left untouched. Al-Battani improved on Ptolemy’s value for the obliquity of the
ecliptic, the solar mean motion (and, hence, the precession of the equinoxes),
the eccentricity of the Sun, and the longitude of its apogee. He also introduced
developments in trigonometrical techniques by replacing Greek chords with the
sines (imported from India) and introducing cosines.

The method used by Ptolemy for finding the distance of the Sun in terms
of the radius of the Earth was the basis of all future attempts for well over
1000 years. The earliest surviving redetermination of this distance is that of
al-Battani, and his result for the mean Earth—Sun distance is 1108 Earth radii,
which compares with Ptolemy’s value of 1210."

The influence of al-Battani’s work, which has probably been studied more
carefully than that of any other Islamic astronomer, can be seen from the fact
that Peurbach in the fifteenth century and Copernicus in the sixteenth quote him
often, particularly on matters of solar motion and precession. References to al-
Battani can be found also in the works of Tycho Brahe, Kepler and Galileo.”
The close relation that still existed between astronomy and astrology is evident
from the fact that al-Battani also wrote a commentary on Ptolemy’s Tetrabiblos.

The work of Thabit ibn Qurra and al-Battani raised the level of awareness
among Islamic astronomers. In particular, they began to appreciate the inade-
quacies of the parameters used in the Almagest. This led to numerous attempts
to improve on Ptolemy’s values so as to produce more accurate tables, and also
to a much greater interest in the theoretical aspects of Ptolemy’s geometrical
schemes.

Developments in trigonometry

The last great representative of the House of Wisdom in Baghdad was the tenth-
century astronomer and mathematician Abu al-Wafa.” He made significant

"' See van Helden (1985), p. 32. Copernicus later based his own determination on parameters
adapted from al-Battani (see Swerdlow (1973)).

In his L’ histoire de I’astronomie du moyen dge (1819), Delambre devotes fifty-three pages to a
thorough analysis of al-Battant’s zij, but the best modern work is held widely to be the Latin
translation and commentary written by C. A. Nallino between 1899 and 1907.

Abu al-Wafa wrote a major astronomical work that was modelled on the Almagest but which
did not introduce anything essentially new to theoretical astronomy. He was, however, credited
by the nineteenth-century French scholar L. Sédillot, with discovering the so-called variation
of the Moon, though this view has subsequently been shown to be false and Tycho Brahe has
been reinstated as the true discoverer of this phenomenon.

12
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Fig. 4.2. The rule of four quantities.

achievements in the development of spherical trigonometry and the construction
of trigonometric tables that were more accurate than those of Ptolemy. One result
that facilitated calculations with right spherical triangles was what has become
known as the ‘rule of four quantities’, illustrated in Figure 4.2. If ACB and
AED are right-angled spherical triangles with a common angle at A and right
angles at C and E, then

sin BC  sinDE

sinAC ~ sinAE’
A result of perhaps greater significance was the sine theorem for spherical
triangles, which states that in any spherical triangle ABC,

sina sinb sinc

sinA  sinB  sinC’
This result (which interestingly predates the sine theorem for plane triangles)
simplified greatly the solution of many problems involving oblique spherical
triangles, because it removed the need for decomposing them into a number of
smaller right-angled ones.

The sine formula for spherical triangles was used to good effect by the famous
Islamic scholar al-BirtinT with his solution to the gibla problem, this being to
determine the direction in which Mecca was closest from a given location on
the Earth, i.e. along a great circle. Thus in Figure 4.3, in which P represents
one’s own position, M is Mecca, and Py the north pole of the Earth, the required
angle is 6.

One of al-B1riinT’s solutions to this problem was as follows. “ The latitude and
longitude of one’s own position (¢, ) and of Mecca (8, §) are assumed known.
We then have PxP =90° —a, Px\M =90° — 8 and /PPyM = § — y. The
sine formula is not immediately applicable to the spherical triangle P Py M, but
al-Birtnt devised a solution procedure that involved a sequence of triangles for
which the sine formula could be used. The technique is illustrated in Figure 4.4,
which is a view looking down on the Earth from directly above the position

" See Katz (1998), p. 279 (see also Kennedy (1984) and references cited therein).
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5

Fig. 4.3. The gibla. The observer is at P, M is Mecca, Py is the north pole.

S

A

Fig. 4.4. Al-Birunt’s solution to the gibla problem.

P. Thus, ANIDSE is the horizon circle for which P is the pole. The horizon
circle for which M is the pole is ABHCGD. Two further great circles are
shown both passing through M. First, M F'G is the horizon circle for which B
is the pole and, second, M Py H is the great circle passing through Mecca and
the north pole. The solution procedure involves three applications of the sine
formula and one application of the rule of four quantities.

We begin by applying the sine formula to the triangle Py F M, noting that
IMPyF =6—vy, P\M =90° — 8 and /M F Py = 90°. Thus,

sin M F = sin(§ — y)cos B.
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Hence, arc M F is known, and then sois FG = 90° — M F. Since FG is part
of the horizon circle the pole of which is B, we know that /PN\BH = /FBG =
FG. This then permits the application of the sine formula to the right-angled
triangle PxBH (in which PyH = B):
sin 8

sin FG '

Thus, Py B is now determined, and since PN\N = «, immediately we get BN =
a — PyB and BP = 90° — BN. Next, we use the rule of four quantities on the
triangles B PC and B F G, noting that BF = 90°,

sin PyB =

sin PC =sin PB-sin FG.

The quantities on the right-hand side are all known, so PC and then CI =
90° — PC can be determined. Finally, we use the sine formula on triangle
BAN. As A is the pole of EM PC1, we have /BAN = /CAI = CI, and so

sin AN sin BN

sin/ABN  sinCI "’
Now Z/ABN = /PxBH and the right-hand side is known, so AN can be de-
termined. The gibla can then be calculated since 8 = NE = 90° + AN.
Al-BiriinT’s interests ranged over virtually all the branches of science known
in his time. He studied Aristotle closely at an early age and engaged in a fairly

acrimonious exchange of letters with the philosopher Ibn Sina (known in Latin
as Avicenna), arguably the most famous of all Islamic scientists. Al-Birlini sent
Ibn Sina a series of questions attacking Aristotelian natural philosophy, pointing
out that many of its tenets had scant justification. As just one example, al-Biriint
wrote: ‘There is nothing wrong in imagining the forms of Heavens as ellip-
tic. Aristotle’s reason for making them spherical is hardly convincing.’]5 How
true!

Al-Biriin wrote eight major astronomical works, the most comprehensive
being his Canon, which was one of the most important astronomical encyclope-
dias, dealing with such subjects as cartography as well as theoretical astronomy.
His models for the heavenly bodies essentially were Ptolemaic, though many
of his parameters were derived independently. The Canon was not translated
into Latin, and al-Birani’s work remained unknown in the medieval West.

Another great Muslim astronomer from this period, whose works remained
largely unknown in Europe during the Renaissance, was Ibn Yiinus. He lived and
worked in Cairo and is reported to have been an eccentric figure who devoted

** Said and Khan (1981).
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his time to astronomy, astrology and poetry. He wrote a major astronomical
handbook (the Hakemite Tables) that, unlike those of many of his contempo-
raries, contained a large number of observations of eclipses and conjunctions.
This work was used widely in the Islamic world but only became known in the
West in the eighteenth century.]f> Ibn Yiinus also made significant contributions
to trigonometry and introduced the idea of prosthaphaeresis, which was used
by astronomers to shorten calculations before the invention of logarithms in the
seventeenth century. He realized that the recently discovered identity

2cosx cosy = cos(x + y) + cos(x — y)

could be used in conjunction with trigonometric tables to simplify the pro-
cess of multiplication by converting it into one of addition and dividing by 2.
This method was one of the reasons why tables were often computed to over
twelve significant figures.

Islamic religious observances presented quite a few problems in mathemati-
cal astronomy, the gibla being just one example, and this was one of the factors
that encouraged the study of such problems. This influence is very evident in
Ibn Yinus’s work. He produced a set of tables for time-keeping by the Sun
and regulating the astronomically defined times of Muslim prayer and, up until
the nineteenth century, virtually all Egyptian Muslim prayer tables were based
on his work."” He also investigated the problem of determining just when the
lunar crescent became visible in the evening sky following a conjunction of
the Sun and Moon. This latter problem was of great importance because the
beginning of each month was determined by the sighting of the crescent, and it
is a complex problem involving, among other things, the relative positions of
the Sun, Moon and horizon."”

Criticisms of Ptolemy

In terms of the physical structure of the Universe, it was the views of Aristotle
that dominated, though an attempt to unify the ideas of Aristotle with those
of Ptolemy, as espoused in his Planetary Hypotheses, was made by Ibn al-
Haitham (known in Latin as Alhazen and famous primarily for his work on
optics) in On the Configuration of the World, a work that had a considerable
influence in Europe during the Renaissance. The fundamental principles that
he believed had to underlie any such unification were that there was no empty

:Z Further details can be found in King (1974, 1975b). 17 See King (1973).
See, for example, Hogendjik (1988), King (1988).
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space in the Universe, and celestial bodies move with uniform circular motion.
He thought there had to be a unique spherical body corresponding to each
motion that Ptolemy had introduced in the Almagest. In a later work, Doubts
Concerning Ptolemy, Ibn al-Haitham noted that Ptolemy had set himself the
task of accounting for the phenomena using uniform circular motions and that,
since he had introduced the equant mechanism, he could not be considered to
have succeeded. He objected to Ptolemy’s lunar theory because it involved an
imaginary point opposite the centre of the deferent controlling the motion of the
lunar apogee, and this seemed physically impossible. Above all, Ibn al-Haitham
argued, astronomy should deal with real bodies and not imaginary ones.

Ibn al-Haitham’s work identified clearly those aspects of Ptolemaic astron-
omy that were considered unsatisfactory and indicated what would be required
in any new formulation of theoretical astronomy. The first people who tried to
reform astronomy along these lines emerged from a group of Islamic scholars
from Andalusia, southern Spain, who in the twelfth century carefully studied
and developed Aristotle’s philosophy. The founder of the Spanish Aristotelian
School was Ibn Bajja (known in Latin as Avempace), but his most famous advo-
cate was Ibn Rushd (Averroés), who wrote numerous commentaries on Aristotle
and became known simply as ‘The Commentator’. Ibn Rushd’s criticisms of
Ptolemy were more extreme than those of his predecessors:

To assert the existence of an eccentric sphere or an epicyclic sphere is contrary to
nature . . . The astronomy of our time offers no truth, but only agrees with the

. . 19
calculations and not what exists.

Ibn Rushd and his followers produced a pantheistic philosophy which spread
widely and was condemned as heresy by the Church.

Two other Spanish astronomers who were critical of Ptolemy, though not
because of any adherence to Aristotelian principles, were Al-Zarqali (Latinized
as Azarquiel) and Jabir ibn Aflah (Geber™). Al-Zarqali, one of a small but
important group of astronomers that grew up in Toledo in the second half of the
eleventh century, is credited with being the first astronomer to recognize the slow
steady motion of the Sun’s apogee with respect to the fixed stars. He estimated
this at 1° in 279 years, or 12.9” per year, which is close to the modern value
of 11.6"." The very fact that there were observable phenomena that were not
modelled by Ptolemy cast doubt on the whole of Ptolemaic theory. Al-Zarqalt
is also often cited as the author of the collection of astronomical tables drawn

19 Quoted from Gingerich (1992), p. 54.

~ Not to be confused with the alchemist Jabir ibn Hayyan (eighth century) who was also known
as Geber in the West.
Toomer (1969). Given the data he had to go on, the accuracy of the result was rather fortuitous.
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up in Toledo, though it is more likely that he wrote some but by no means all
of them. The tables were based on the treatises of many previous astronomers,
including al-Khwarizmi and al-Battani, and they utilized Thabit ibn Qurra’s
theory of trepidation. The original Arabic version of the tables is lost, but two
Latin translations survive, and they were very successful in the Latin world
until superseded by the Alfonsine Tables in the late thirteenth century.22

Jabir ibn Aflah’s influence on future mathematical astronomy comes from
his work Corrections of the Almagest, which was translated into Latin in 1175
by Gerard of Cremona, and from his work on trigonometry. As far as the latter
is concerned, he simplified Ptolemy’s treatment of spherical trigonometry by
replacing Menelaus’ theorem with simpler theorems on right spherical triangles.
Jabir was not the first to do this — Abu al-Wafa had made similar (and better)
simplifications two centuries previously — but Abu al-Wafa’s work was not
translated subsequently into Latin. Jabir criticized Ptolemy on a number of
counts. He was concerned with the lack of mathematical rigour in some of
Ptolemy’s arguments; in particular, he felt that the assumption that the centre of
the deferent in the models of the superior planets was exactly half-way between
the centre of the Earth and the equant point, required proof. He also criticized
Ptolemy’s ordering of the planets. Concerning Mercury and Venus he wrote:

Since, therefore, no parallax worth bothering about (according to Ptolemy) is to be
found in either of them, and the sun does have a sensible parallax worth bothering
about, how can they be below the sun?”’

The view that Mercury and Venus were further away than the Sun had many
adherents during the Middle Ages.

The most extensive attempt to reform theoretical astronomy by a member
of the Spanish Aristotelian School was that of al-Bitrfiji (Alpetragius) who
flourished in the twelfth century and constructed a new planetary system in line
with Aristotelian principles, that he hoped would displace the philosophically
unsatisfactory Ptolemaic system. He was aware of the accuracy of Ptolemy’s
mathematical constructions and recognized that a philosophically acceptable
system must also be able accurately to model the phenomena. Underlying the
Aristotelian cosmos was the idea of concentric spheres centred on the Earth,
and al-BitrGjT’s reform involved replacing Ptolemy’s planar geometric models
with models on the surface of a sphere. By this process, eccentric circles and
epicycles were removed from the theory, both of these mechanisms violating
the Aristotelian principle of a single centre of rotation — the centre of the Earth.

Z Details of the Toledan tables can be found in Toomer (1968).
“ Quoted from Lorch (1975).
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The fundamental idea in the new system was that each planet was supposed
to be attached to a sphere, the motion of which was governed by the motion
of its pole (a point with an angular distance from the planet of 90°) and as
a consequence the planets in the new scheme remained equidistant from the
Earth.”

A ninth sphere was added to the standard Aristotelian model in order to
model the precession of the equinoxes. Al-Bitraji believed that the rate of pre-
cession (fixed by Ptolemy at I° per century) was variable, but unlike Thabit ibn
Qurra’s theory of trepidation, precession in al-Bitriiji’s system was always in
the same direction it was just its rate that oscillated. The ninth sphere carried
the diurnal motion of the heavens, and the eighth sphere — the sphere of the
fixed stars — was attached to the ninth, but its poles (i.e. the poles of the ecliptic)
described two small circles around the poles of the ninth. As a consequence,
the paths of the fixed stars were not circular but curved, these curves being
interpreted traditionally as spirals; hence, al-Bitrtiji’s theory is often referred
to as the ‘spiral-motion theory’. In fact, the theory was never worked out in
sufficient detail for anybody to be sure of its mechanisms, though it is clear that
it was a system based on concentric spheres centred on the Earth, al-Bitr@ijT’s
order for the planets being Moon, Mercury, Sun, Venus, Mars, Jupiter and,
finally, Saturn. This theory certainly was never able to predict quantitatively
the positions of heavenly bodies and, hence, it could not be used to construct
astronomical tables. As a result, it never become a serious rival to Ptolemaic
theory, but from al-Bitr@ijT’s time onwards, no serious astronomer could ignore
the philosophical objections to Ptolemaic astronomy. The fact that al-Bitr@ijT’s
theory was not very successful did not stop it attracting the attention of philoso-
phers and astronomers; it was translated into Latin in 1217 and spread through
Europe during the thirteenth and fourteenth centuries. It continued to be cited
throughout the fifteenth and sixteenth centuries, and notably by Copernicus.

Further opposition to Ptolemaic astronomy can be found in the writings
of the Jewish astronomer and philosopher Maimonides who lived in Egypt in
the twelfth century. Like al-Bitriiji, he objected to epicycles on philosophical
grounds, since the planet carried on the epicycle does not move toward, away
from, or around a centre. He also objected to eccentric orbits for the planets,
and pointed out that in the Almagest some of the planet’s deferents are centred
outside the orbit of the Moon. Indeed, the centre of Jupiter’s deferent is 525 Earth
radii from the Earth and, hence, lies between the spheres of Mercury and Venus,
something Maimonides considered quite improbable. Maimonides was also

# Al-BitrijT’s models were described in his treatise On the Principles of Astronomy, a translation
of which is given in Goldstein (1971).
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unhappy with Aristotelian models for the region above the Moon, since they
failed to predict the observed motions but, rather than attempt to resolve these
difficulties, he took the view that an understanding of the heavens was not within
man’s grasp.

These difficulties do not concern the astronomer; for he does not profess to tell us
the existing properties of spheres, but to suggest, whether correctly or not, a theory
in which the motion of the planets is circular and uniform and yet in agreement
with observation . . . Man’s faculties are too deficient to comprehend even the
general proof the heavens contain for the existence of Him who sets them in
motion. It is in fact ignorance or a kind of madness to weary our minds with finding
out things which are beyond our reach, without the means of approaching them.”

Although Maimonides was critical of Ptolemaic astronomy as a physical model
for the Universe, he was quite happy to use it as the basis for astronomical
calculations.”

The great conflict between Ptolemaic astronomy and Aristotelian
cosmology — which continued right up until the sixteenth century — did not
exist when originally Ptolemy wrote the Almagest. Ptolemy wrote his master-
piece 500 years after Aristotle, and the whole issue of the physical interpretation
of his theory clearly was of secondary importance to him, and presumably to his
contemporaries. However, to those rediscovering these works, the time between
Aristotle and Ptolemy was not significant — they were both part of the ‘ancient
learning’ that was being resurrected — and taken together they appeared full of
contradictions. Eventually, these contradictions cast doubt on the whole edifice
of ancient astronomy.

The Maragha School

Theoretical developments in astronomy were not restricted to the astronomers
of southern Spain. In the thirteenth century, another centre of theoretical activity
grew up in the eastern part of the Islamic world, the first major figure being
Nasir al-Din al-TasT (better known in the West as Nasir Eddin). Nasir al-Din was
an advisor to the Mogul conqueror Hiilegii, a grandson of Genghis Khan and
(despite his other excesses) a patron of the sciences, and was a man of enormous
influence, both during his own lifetime and subsequently. He was committed

% Quoted from Goldstein (1980).
" Details of Maimonides’ mathematical astronomy, which is closely related to that of al-Battant,
can be found in Neugebauer (1949) and for a discussion of his attitude toward astronomy (see
Kellner (1991)). For more on the history of Jewish mathematical astronomy, see Beller (1988).
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to the Greek ideal of the pursuit of knowledge and became the first to head the
Maragha observatory built, beginning in 1259 in what is now northwestern Iran,
at Hiilegii’s instigation. One of the primary functions of the observatory was to
determine new parameters for solar, lunar and planetary models so as to improve
the accuracy of astrological predictions. The observatory, which existed in one
form or another until at least 1316, became a large research institution with a
well-stocked library, a staff of at least ten, and a wide selection of expensive
observing instruments.”

Nasir al-Din made contributions in virtually all fields of Islamic scholarship
and wrote a great many manuscripts. In astronomy, his major contribution was
his Memoir on Astronomy, the final revisions of which were made shortly before
he died in 1274." The Memoir on Astronomy was a narrative commentary on the
Almagest which attempted to give Ptolemy’s mathematical models a physical
meaning. It was hugely influential, both in the Islamic world (where it became
part of the school curriculum and was itself the subject of numerous commen-
taries) and farther afield. In general, the work does not contain geometrical
proofs (the reader is directed to the Almagest for these), the notable exception
being al-Tus1’s development of a geometrical device (now named after him)
designed to remove some of the philosophical objections to Ptolemaic theory.

Nasgtr al-Din discovered that motion in a straight line could be produced by a
combination of two circular motions, and he invented what has become known
as the “TasT couple’ to achieve this.

Let us set forth . . . a lemma, which is as follows: if two coplanar circles, the
diameter of one of which is equal to half the diameter of the other, are taken to be
internally tangent at a point, and if a point is taken on the smaller circle — and let it
be the point of tangency — and if the two circles move with simple motions in
opposite directions in such a way that the motion of the smaller [circle] is twice that
of the larger so the smaller completes two rotations for each rotation of the larger,
then that point will be seen to move on the diameter of the large circle that initially
passes through the point of tangency, oscillating between its endpoints.29

The circles across the top of Figure 4.5 illustrate one cycle of the motion with
the point C on the circumference of the smaller circle oscillating along the
diameter through the initial point of tangency. A proof that the motion resulting

* The term ‘Maragha School’ is used commonly to refer to all the astronomers who contributed
to the research programme begun at the observatory, regardless of whether the individual
actually worked there or not. For a general discussion of the astronomical achievements of this
School (see, for example, Saliba (1987a, 1991).

This work has been translated, with an extensive commentary, in Ragep (1993).

From Nastr al-Din al-Tast’s Memoir on Astronomy. Translation from Ragep (1993). Nasir
al-Din also developed a version of the couple which was designed to produce oscillations
along circular arcs (see Saliba and Kennedy (1991)).



102 Developments in geocentric astronomy

NCEIS)

Fig. 4.5. The TusT couple.

from the two oscillations described above is, indeed, rectilinear can be given
with reference to the lower part of the figure. The radius OBA is considered to be
fixed to the larger circle, which rotates anticlockwise carrying the smaller circle
around with it. At the same time, the smaller circle, carrying the point C, rotates
clockwise at twice the rate of rotation of the larger circle. The motion starts when
A and C coincide (at D) and /DO A = « is zero. When the larger circle has
turned through o, the smaller one has turned through 2« and so /ABC = 2a. It
follows that /O BC = 180° — 2« and, hence, that /BC O = «. This shows that
C always lies on the diameter through D. The speed of the point on the smaller
circle which is instantaneously at A is proportional to |O A| — 2|0 B|, which
is zero by construction. Hence, another way of visualizing the mechanism —
though not one that would have been acceptable philosophically to Nasir al-
Din - is to think of the smaller circle as rotating around the inside of the larger
one.

The Tust couple is very simple geometrically, but in the context of its day
it had profound consequences, since it undermined the Aristotelian distinc-
tion between circular celestial motions and rectilinear terrestrial motion. Using
this device, the astronomers at the Maragha Observatory were able to modify
Ptolemy’s geometrical models so as to remove the need for either an eccen-
tric deferent or an equant. The most sophisticated versions of these new models
were produced by Ibn al-Shatir, who was employed as a muwagqgqit (time keeper)
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at the Umayyad mosque in Damascus. The office of muwagqgqit came into being
around the eleventh century, at a time when theoretical astronomy began to
be accepted widely in religious society, and provided a secure and respected
position for many Islamic astronomers.

Ibn al-Shatir was the most distinguished Muslim astronomer of the fourteenth
century, but his work remained largely unknown in medieval Europe, only being
rediscovered in the 1950s.” He constructed new models for the Sun, Moon, and
planets which incorporated a number of ingenious modifications to Ptolemaic
theory. The reasons behind the changes were twofold. First, Ibn al-Shatir wanted
to remove some of those aspects of Ptolemy’s astronomy that were unacceptable
philosophically, (e.g., the equant mechanism) though as we shall see, he had no
objection to using epicycles. Second (in the case of the Sun and Moon), there
were observed phenomena that Ptolemy had made no attempt to reproduce.

Ibn al-Shatir’s modified solar theory is described in The Final Quest Con-
cerning the Rectification of Principles. The need to modify Ptolemy’s the-
ory came from two observed phenomena not reproduced in Ptolemy’s original
scheme. The first was the steady motion of the solar apogee, discovered by al-
Zarqali, which Ibn al-Shatir modelled by simply adding an additional sphere:

The repeated accurate observations have confirmed that the motion of the apogee is
faster than the motion of the eighth [sphere]. It was therefore necessary to add

. . . 3
another orb which would move the apogee with the observed motion. l

The other phenomenon that concerned Ibn al-Shatir was the change in the
apparent diameter of the Sun. According to Ptolemy, the diameter could be
regarded as a constant, and he gave the value 0; 31, 20° though, in his solar
theory, the ratio of maximum to minimum distance is about 0.92. From the
observations available to him, Ibn al-Shatir came to the erroneous conclusion
that the diameter at apogee was 0; 29, 5° and at perigee it was 0; 36, 55°, with
amean value of 0; 32, 32°. This implied that the ratio of maximum to minimum
apparent diameter and, hence, the ratio of the solar distance at apogee to that at
perigee, was about 0.788, significantly different from the value used by Ptolemy.

Ibn al-Shatir’s solution is illustrated in Figure 4.6. The Earth is E and the
point D moves around a circle centred on E such that the line E D always points
toward the mean sun S. This circle is called the ‘parecliptic’ and is taken to
have a radius of 60 units. The parecliptic carries a smaller circle — the deferent —
centred at D, that rotates in the opposite direction at the same rate, so that the
line DB connecting the centre of the deferent to a point on its circumference

2(1) See Roberts (1957), Kennedy and Roberts (1959), Abbud (1962), Roberts (1966).
Quoted from Saliba (1987b).
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Fig. 4.6. Ibn al-Shatir’s solar theory.

always is parallel to the line E'A which points toward the solar apogee. If BC
is drawn parallel to DE, then EDBC is a parallelogram. If B were taken to
represent the Sun, then the epicycle model just described would be equivalent
to an eccentric circular motion centred at C (see Figure 2.11, p. 46) and, hence,
equivalent to Ptolemy’s solar theory.

However, Ibn al-Shatir introduced a third circle, centred at B, called the
‘director’, that carries the Sun S. This rotates at twice the angular speed of the
deferent and parecliptic and in the opposite sense to that with which B moves
around the deferent. This geometrical arrangement ensures that if S Q is drawn
parallel to DE, the point Q remains fixed, with |EC| equal to the radius of
the deferent and | QC| the radius of the director, and the Sun rotates uniformly
around Q. This is demonstrated in the diagram accompanying the main figure,
which shows an enlarged version of the parallelogram E D BC in which all the
angles marked are equal. Ibn al-Shatir thus managed, in effect, to incorporate an
equant into the solar theory using only uniform circular motions. The parameters
he found to be appropriate for his model were |EC| = 4; 37, |QC| = 2; 30
and so |E Q| = 2; 7 which is close to Ptolemy’s value of the eccentricity of
60/24 = 2; 30, so that Ibn al-Shatir’s model predicts solar longitudes that are
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Fig. 4.7. Ibn al-Shatir’s lunar theory.

close to those predicted by Ptolemy. The variation in apparent diameter is
now

60 —4; 37 —2; 30
60 + 4; 37 +2; 30

in agreement with Ibn al-Shatir’s, albeit erroneous, value. The whole mechanism
then is attached to a larger geocentric sphere, the encompassing orb, which has
the observed steady motion of the solar apogee. Ibn al-Shatir stated explicitly
that he believed the theory of trepidation to be unsound because it was not
supported by observational evidence.

For the Moon, Ibn al-Shatir again noted that one reason for modifying
Ptolemy’s scheme was better to predict the changes in its apparent diameter:

~ (.788,

[the model of Ptolemy also] requires that the diameter of the moon should be twice
as large at quadrature than at the beginning, which is impossible, because it was not
seen as such.

The modified lunar theory is illustrated in Figure 4.7 and can be seen to be similar
in structure to the solar theory, with an epicycle on an epicycle. The mean moon
is M and this rotates around the Earth once per synodic month (relative to ES),
the radius of this deferent circle being taken as 60. The point B, which is the
centre of the epicycle that carries the Moon M rotates in the opposite sense
around M once in each anomalistic month. Finally, the Moon rotates around
its epicycle in such a way that the angle M BM is twice the angle M ES. Tbn

* Quoted from Saliba (1987b).
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Fig. 4.8. Ibn al-Shatir’s theory for the superior planets.

al-Shatir took the radii of the two epicycles to be r; = 6; 35 and r, = 1; 25,
and then this mechanism implies that at the syzygies the distance of the Moon
from the Earth varies between r £ (r; — r») (i.e. between 54; 50 and 65; 10)
and at the quadratures between r &£ (r; + r,), i.e. between 52; 0 and 68; 0.

Ibn al-Shatir also devised a method for incorporating similar mechanisms
into the models for planetary longitudes. Here, the motivation would appear to
have been entirely aesthetic, since, as far as accuracy was concerned, his mod-
els did not improve on those of Ptolemy, but simply removed the unpleasant
equants. Indeed, Ibn al-Shatir chose his parameters so as to make his models
equivalent mathematically to those of Ptolemy. However, he was very pleased
with the result, as in the introduction to his zij (The New Astronomical Hand-
book), he wrote:

I therefore asked Almighty God to give me inspiration and help me to invent

models that would achieve what was required, and God—may He be praised and

exalted, all praise and gratitude to Him—did enable me to devise universal models
for the planetary motions in longitude and latitude and all other observable features
of their motions, models that were free—thank God—from the doubts surrounding
previous models.”
The mechanism that Ibn al-Shatir used to model the superior planets is shown
in Figure 4.8. As in the solar and lunar schemes, the Earth is at the centre, but

# Quoted from King (1975a).
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now there are three, rather than two, epicycles. The point D rotates around a
circle, radius 60, and B rotates around D in the opposite sense and at the same
rate, so that DB is always parallel to EA, A being the apogee of the orbit.
This is equivalent to B moving anticlockwise around an eccentric circle (the
dashed circle in the figure, centre G) with eccentricity equal to |EG|, which
is the same as |B D|. The centre of the third epicycle, C, rotates around B so
that /D BC is twice /DE A and, just as in the solar theory, this ensures that C
rotates uniformly about a fixed point Q. Finally, the planet, P, rotates around
C on this third epicycle. The uniform rotation of P is measured with respect to
the line QCF and is such that C P always is parallel to ES. In order to make
this geometrical arrangement match closely Ptolemy’s system, it is necessary
to choose the radii of the first and second epicycles, |BD| = ry and |BC| = r»,
so that they satisfy

r—r=e and ri +r, = 2e,

where e is the eccentricity in Ptolemy’s model (i.e. ¢ = | E O] in Figure 3.13,
p. 77) and this is precisely what Ibn al-Shatir did. Ibn al-Shatir’s models for
the inferior planets were similar though, not surprisingly, that for the motion of
Mercury was more complicated, involving the use of yet another epicycle.

The work of Ibn al-Shatir represents the culmination of a programme of
research that was driven by the desire to correct certain deficiencies in Ptole-
maic astronomy. In the main, the perceived defects were at a philosophical
level — astronomers objected to some of Ptolemy’s geometrical models because
they could not physically be realized without violating some well-established
principle. Most Islamic astronomers were quite happy to take Ptolemy’s ob-
servations as they were and, apart from correcting his values for things like
precession and obliquity, wanted to produce theories that reproduced exactly
the same phenomena as Ptolemy’s did. Thus, for example, Mu’ayyad al-Din
al-‘Urdi, an astronomer from Damascus who developed alternative lunar and
planetary theories, explicitly stated that he had made no observations of his
own and stressed that his criticisms of Ptolemy were at a higher conceptual
level.”

The new models that were devised by the Maragha School of astronomers
were a great success in that they produced longitude predictions as accurate
as those from the Almagest, but without the use of the physically impossible
devices introduced by Ptolemy. The majority of practising astronomers, on the

* Discussions of various aspects of al-‘Urdr’s work can be found in a number of articles that
have been reprinted in Saliba (1994) and his ideas on the size of the Cosmos, which differed
greatly from those of Ptolemy, are described in van Helden (1985), pp. 32-3.
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other hand, stuck with the tried and tested procedures that had been in existence
for centuries.

The Maragha Observatory was not the only significant establishment of its
type in the history of Islamic astronomy. There was another observatory, built by
Ulugh Beg in Samarkand. Ulugh Beg (this is not his original name, but means
‘great prince’) was, from the age of 15, a provincial governor in Samarkand but,
unlike his grandfather, the Mongol conqueror Tamerlane, he was not interested
in conquest but in science. He succeeded his father as ruler of the Mongol
empire in 1447, but was murdered by his son 2 years later. During the quarter
century leading up to Ulugh Beg’s assassination in 1449, Samarkand was the
most important scientific centre in the East and in 1420 he founded an institute
of higher learning there (in which astronomy was the most important subject). In
1424, he built an observatory, which was destroyed in the sixteenth century, its
location being rediscovered in 1908 by the archaeologist V. L. Vyatkin. Ulugh
Beg’s observatory was responsible for many accurate determinations of solar
and planetary parameters, as well as the construction of extremely accurate
trigonometric tables. However, it is most famous for the production of the first
star catalogue not based on that of Hipparchus and Ptolemy. The influence of
this catalogue on later developments in the West was minimal, though, since
it only became well known in Europe in the mid seventeenth century, after the
publication of the more accurate observations of Tycho Brahe.

One of the chief scientists at Ulugh Beg’s observatory was al-Kashi, who
wrote a number of works, the most famous of which was an encyclopedia of
elementary mathematics that included large sections on methods of calcula-
tion for astronomers.” Al-Kashi also achieved a significant computational feat
when he computed 27 to sixteen decimal places, greatly exceeding all previous
results. His stated motivation for doing this was so that he could calculate the
circumference of the Universe to within the thickness of a horse’s hair! Rather
more useful was his computation of sin I° to ten sexagesimal places.

The revival of learning in Western Europe

While Islamic scholarship flourished, learning in Western Europe stag-
nated. The disintegration of the Roman Empire resulted in the almost total
disappearance of the Greek language and, thus, most of the great Greek scien-
tific works were inaccessible to European scholars. A few secondary works had
been translated into Latin, including the first part of Plato’s Timaeus — which

* Described in detail in Kennedy (1990).
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represented the main source of knowledge concerning Greek cosmology — and
a few Latin works (e.g. Pliny the Elder’s Natural History (first century) and
Martianus Capella’s popular mythological allegory The Marriage of Philol-
ogy and Mercury (fifth century)) described some basic astronomy. Euclidean
geometry was available only through an incomplete sixth-century translation
by Boethius, and the detailed Ptolemaic theory of the heavens appears to have
been completely unknown. Time-keeping, both on a daily basis and for fixing
religious observances within the calendar was, of course, very important and
the ability to do this had to be maintained. In the eighth century the Venerable
Bede, who lived in northern England, wrote works on this subject that were
used for over 1000 years.36

Trade routes between Western Christendom and the Arab world had been
established by the ninth century, but the transmission of scientific knowledge to
the West did not really begin until contact with Islamic scholarship was made
when European scholars started visiting Spanish monasteries in the eleventh
century. Latin translations of previously unknown works began to be made from
about 1000, the rate at which they appeared reaching a peak in the twelfth cen-
tury —often referred to as the ‘century of translation’. The Spanish city of Toledo
was conquered by Alfonso VI in 1085 and, in the twelfth century, became the
main centre for translation from Arabic into Latin. Many of the works that were
translated were highly technical, and specialized words which were not under-
stood were often simply transliterated. Some of these words now form part of
our technical vocabulary, such as ‘zenith’ and ‘nadir’ (the nadir is the point on
the celestial sphere diametrically opposed to the zenith). Aristotelian natural
philosophy was rendered into Latin through translations of his Meteorology,
Physics and On the Heavens; Europe became aware of the enormous achieve-
ments of the Greeks in mathematics through translations of Euclid, Archimedes
and Apollonius, and as far as astronomy was concerned, scholars at last were
able to appreciate the sophistication of Ptolemy’s Almagest — translated in 1175
by Gerard of Cremona — as well as the results of the previous 400 years of
Islamic endeavour.” From the end of the twelfth century, more and more trans-
lations were made direct from the original Greek texts, rather than through the
intermediate Arabic translations.

Also significant was the introduction into Europe of the Hindu-Arabic nu-
merals by Leonardo of Pisa (better known as Fibonacci). Leonardo spent a
great deal of his early life travelling around the Mediterranean and came into

% For details of early medieval astronomy, see, for example, Eastwood (1997),
McCluskey (1998).
A list of translations made during this period can be found in Crombie (1959).
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contact with the mathematics of the Islamic world. It was problems that arose
in the world of commerce that provided the motivation for his own work but
its influence was much broader. In his widely read Book of Calculation (1202),
he described algorithms by which all the basic operations of arithmetic could
be performed on numbers written using the decimal positional system. (This
was for integers only; it would be another 400 years or so before decimal frac-
tions were introduced.) Fibonacci also introduced Europeans to the algebraic
techniques of men such as al-Khwarizmi.

Works such as the Almagest intrinsically were difficult, and the problems
often were exacerbated in the Latin translations. As a result, a number of greatly
simplified versions began to appear, e.g. the many manuscripts going by the
name Theory of the Planets but only containing simple descriptions of epicyclic
motion, and the hugely popular On the Sphere by Johannes de Sacrobosco.”
Sacrobosco’s book, which was used in schools until the early seventeenth cen-
tury, was very short and contained the basic results of geocentric astronomy.
The work has four sections, but only the final part contained information on the
Ptolemaic theories for the Sun, Moon and planets, and the treatment was ex-
tremely rudimentary. Many commentaries on On the Sphere were written, some
of which were attempts to supplement the brief details of the original work, but
the first complete account of Ptolemy’s astronomical system that was actually
written in the West, which included numerical details from the Almagest as well
as the physical interpretation from the Planetary Hypotheses, was written by
Campanus of Novarra in the mid thirteenth ce:ntury.39

During the Middle Ages, all technical astronomy was based on that of
Ptolemy, whether from the Almagest or from the large body of literature that
grew up around it. The battle between Ptolemaic astronomy and Aristotelian
natural philosophy continued but was overshadowed largely by the conflict be-
tween Aristotle and Christianity. One of the few attacks on the technical aspects
of Ptolemy’s theory was the broadside made in 1364 by Henry of Hesse (Henry
of Langenstein), who went to great lengths to try and pick holes in the details
of Ptolemaic astronomy. He was wide of the mark, though, since Henry spent
most of his time attacking theories that had been attributed to Ptolemy by later
commentators and interpreters, rather than the actual contents of the Almagest.

* Although Johannes de Sacrobosco wrote what became a standard text on astronomy, virtually
nothing is known about him. He was probably English and he is often referred to by the name
John of Holywood, this surname being the modern English for which Sacrobosco is the
Latinized form. As to when he lived, all that can be said with any certainty is that he was active
in Paris between about 1220 and 1240. For more details, see Pedersen (1985). A translation of

0 the De sphaera can be found in Thorndike (1949).

~ Benjamin and Toomer (1971). Details of textbooks used in the teaching of astronomy at
medieval universities can be found in Pedersen (1981).
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The fact that Henry, an advocate of homocentric astronomy, had a great reputa-
tion for his astronomical knowledge, just goes to show that such expertise was
in fairly short supply in the fourteenth century.40

As far as the history of astronomy is concerned, one of the most significant
events of the Middle Ages took place in thirteenth-century Spain. The Christian
King Alfonso X (the Wise) ruled the kingdoms of Leon and Castile from 1252 to
1284, and established and presided over a group of predominantly Christian and
Jewish astronomers charged with translating a number of astronomical texts into
the Castilian language.41 The most important output from this enterprise was the
set of astronomical tables that were produced. The original text of the Alfonsine
Tables is lost, but it is presumed widely that they were written in Toledo in
about 1270 to replace the previous tables produced there in the eleventh century
(see p. 97—8).42 The tables circulated in many forms (in Latin translation), the
most popular of which was the version composed by John of Saxony in 1327, and
they formed the basis of practically all astronomical calculations until the mid
sixteenth century. The tables utilize a theory of trepidation which is a modi-
fication of Thabit’s in which precession has both a uniform and a periodic
component.

The work of the Spanish Islamic astronomers was translated into many
languages, not only Latin and Castilian. By the mid thirteenth century, most of
the major astronomical works also had been translated into Hebrew and, in the
fourteenth century, Hebrew astronomy flourished in southern France. The major
figure from this region was Levi ben Gerson (known also as Gersonides and
Leo de Balneolis). Levi was a mathematician, making contributions in algebra,
trigonometry and combinatorics, a philosopher and a biblical commentator, as
well as an astronomer. He is perhaps most famous in the West for inventing the
cross staff (Jacob staff), an instrument used for centuries to measure the angular
separation between celestial bodies. Levi’s Astronomy forms Part 1 of Book V
of his great work on religious philosophy, Wars of the Lord.”

40

y See Kren (1968, 1969).

A legend has grown up around King Alfonso in which he is said to have had his doubts over
Ptolemaic astronomy. For example, Dreyer (1953) mentions Alfonso’s ‘well-known saying’
that if God had consulted him when creating the world, he would have given Him good advice.
However, as Franseen (1993) has shown, this legend only began in the late seventeenth
century. Alfonso was in the habit of blaspheming against God and saying that he would have
made the world differently (i.e. better), but the linking of such remarks with the mathematical
astronomy of Ptolemy would appear to be unjustified.

It has been suggested that the Alfonsine Tables were written in Paris in the 1320s and were
named in honour of the Castilian king (Poulle 1988).

Because of its great length, the Astronomy was not included in manuscript or printed versions
of his philosophical treatise. The first twenty chapters (there are 136!) are translated in
Goldstein (1985).
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There are a number of ways in which the astronomy of Levi ben Gerson
differed from that of other medieval astronomers. In the first place, he made his
own observations and was enlightened sufficiently to believe that these should
form the ultimate test of his theories. Like many before him, he was critical of
Ptolemy, but his overriding concern seems to have been that the models of the
Almagest simply were not good enough at representing the celestial motions.
He was extremely critical of al-Bitraji’s attempted reform of Ptolemaic astron-
omy because it failed to perform the fundamental function of any astronomical
theory, i.e. to reproduce the observed phenomena. In contrast to Ptolemy and
independently from Ibn al-Shatir, Levi decided that the apparent sizes of celes-
tial bodies was part of the observational data that a theory should reproduce.
Rather than accept that the obliquity of the ecliptic and the rate of precession
were variable — views which had been almost universally held since the eleventh
century — he argued that it was much more likely that Ptolemy’s values for these
quantities were erroneous and that they had remained constant since ancient
times." His independence of mind is also apparent from the fact that, unlike
most astronomical writing of his day, his Astronomy does not follow the ar-
rangement of the Almagest. Original as they were, Levi’s ideas do not appear
to have had much influence other than on some later Hebrew writers.

Levi ben Gerson’s greatest achievement in theoretical astronomy was his
lunar theory, which, he claimed, better fitted with observations than previous
models. He was critical of Ptolemy’s theory for the obvious error in the predicted
variation in apparent diameter, and he also argued against the use of an epicycle
because the same side of the Moon was always seen from the Earth, which would
not be the case if it were attached rigidly to an epicycle. As for the accuracy
of lunar longitudes, Levi concluded from his own observations that Ptolemy’s
model was fine at syzygy and quadrature, but not at the octants. The theory
that Levi proposed managed to avoid the use of epicycles and yet reproduce
his own lunar observations better than Ptolemy’s model.” For example, Levi’s
observations revealed very little change in the apparent diameter of the Moon
between quadrature and opposition, and his model predicted that the ratio of the
distances of the Moon at these points should be 0; 58 ~ 0.97. Unfortunately,
not all the observations against which Levi tested his model were accurate, and
not all the changes he introduced were improvements. For example, he took the
angle of inclination of the Moon’s orbit to be 4%0 instead of Ptolemy’s more
accurate value of 5°.

* For details of Levi ben Gerson’s discussion of precession, which forms Chapter 61 of his
. Astronomy, see Goldstein (1975).
Details can be found in Goldstein (1972, 1974).
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Scholasticism

Throughout the Middle Ages in Western Europe, intellectual thought was dom-
inated by the Catholic Church. Prior to about the tenth century the Church was,
by and large, opposed to scientific endeavour, not unnaturally since the early
Christians had had to fight for the survival of their religion by emphasizing
the importance of its theology at the expense of pagan learning. One of the
more liberal early Christian thinkers, St Augustine, wrote in his handbook for
Christians:

When, then, the question is asked what we are asked to believe in regard to
religion, it is not necessary to probe into the nature of things, as was done by those
whom the Greeks called physici; nor need we be in alarm lest the Christian should
be ignorant of the force and number of the elements,— the motion, and order, and
eclipses of the heavenly bodies; the form of the heavens; . . . It is enough for the
Christian to believe that the only cause of all created things, whether heavenly or
earthly, whether visible or invisible, is the goodness of the Creator, the one true
God; and that nothing exists but Himself that does not derive its existence from
Him."
By the time Christian Europe came back into contact with ancient learning in
the tenth century, things had changed. The authority of the Church was now
complete, and provided that it maintained control over it, pagan learning was
no longer a threat. Indeed, many churchmen devoted considerable time toward
the rediscovery of ancient knowledge. Schools of higher learning attached to
cathedrals and monasteries began to appear and eventually these developed into
universities — Bologna in 1088 being the first — the universities of Paris, Oxford,
and Cambridge being founded a little later, around 1200. The universities pro-
duced an élite with an education in such subjects as law, medicine and theology,
and the study of mathematics became codified into the standard format of the
quadrivium: arithmetic, geometry, music, and astronomy.

By the twelfth century, the study of cosmology and natural philosophy once
again became acceptable and, by the thirteenth century, educated Christians
were familiar with the basic principles of the Aristotelian cosmos. The conflicts
between Aristotle and the Scriptures still existed, of course, and the study of
Aristotelian physics and metaphysics was not always welcomed, but over a
period of time Christian theology and ancient Greek ideas about the Universe
gradually were melded together into a unified whole, known as ‘scholasticism’.

Perhaps the person most influential in determining the ultimate nature of this
Christian cosmology was St Thomas Aquinas, who believed that a complete

“ ST AUGUSTINE Works. Quoted from Kuhn (1957), p. 107.
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understanding of the world could be obtained only through both revelation and
reason. Many of Aristotle’s ideas were taken over unchanged, including the
perfect circular motion of the heavens, but others (e.g. the continual existence
of the Universe) were opposed so fundamentally to Christian thinking that
they had to be discarded. In other cases, the inherent contradictions between
Scripture and Aristotelian philosophy were removed by the device of claiming
that the actual words used in the Bible had been simplified deliberately so
that they would be understood by ordinary people. Through his compendium
of Christian knowledge, the Summa theologica, Aquinas enabled Aristotle’s
world view to become a constituent part of Christian thought.

This medieval view of the Universe was enshrined in poetry by the Italian
Dante Aligheri, whose writings contain many references to astronomy. Dante
revered Aristotle, whom he described as the supreme and highest authority, but
he did not feel the need to follow him when it came to matters of astronomical
detail. Here, he would turn to al-Farghani’s description of Ptolemaic astronomy.
Dante’s Divine Comedy follows the author on his journey as he passes through
the centre of the Universe and then from planet to planet until he reaches the
outermost sphere of the stars. He begins by descending into Hell, which is
an inverted cone situated directly beneath the centre of the inhabited world —
Jerusalem — and whose apex is the centre of the Earth (and, hence, of the
Universe). He emerges in Purgatory, an island diametrically opposite Jerusalem
on the Earth’s surface, and on this island is a mountain that extends to the upper
reaches of the atmosphere. From here, Dante enters Paradise, which is made up
of the planetary spheres of medieval astronomy. The journey has a very precise
chronology, beginning on the vernal equinox and lasting 8 days. At each stage,
Dante marks his progress by the positions of the heavenly bodies as they would
have appeared from his current position, and it is through these descriptions
that the author displays his knowledge of technical astronomy.47

Throughout the Middle Ages the belief that the heavenly bodies influence
what happens on Earth was almost universal; St Augustine had described astrol-
ogy as impious superstition and, in the early Middle Ages, the study of astrology
was frowned upon by the Church, as it had been by Islamic religious leaders.
But by the end of the fourteenth century, astrology was practised so widely that
it could no longer be resisted. ‘Practical astronomy’ became very important;
there were chairs of astrology at several major universities, and astrologers
were appointed to high offices in the courts of kings and princes. Many argu-
ments against the validity of astrology were put forward but largely they were
ignored, and astrology became a major stimulus for astronomy, particularly in
encouraging people to construct tables of planetary positions.

M The details of Dante’s astronomy are described in Orr (1956).
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One of those who spoke out against astrology was Nicole Oresme, an ad-
visor to Charles V of France and then tutor to Charles VI. Together with Jean
Buridan and Albert of Saxony at the University of Paris, Oresme mounted a
powerful attack on Aristotelian physics, particularly his theory of motion, but
their influence waned when France was ravaged by the Hundred Years War with
England.48

Following ideas of William of Ockham, Buridan developed an ‘impetus
theory’ of motion in which, contrary to Aristotle’s teaching, it was not necessary
for a body to be acted upon continually by a force for it to remain in motion.”
This was a major step on the long road toward a modern principle of inertia, but
equally significant for astronomy was Buridan’s suggestion that God had given
impetus to the heavenly bodies which, since they encountered no resistance,
accounted for their motion. Here, we see one of the first attempts to apply the
same laws of physics to celestial and terrestrial phenomena.

Oresme produced a French translation and commentary of On the Heavens
in which, while he pretty much agreed with all of Aristotle’s conclusions except
those that contradicted the Creation, he criticized strongly many of Aristotle’s
arguments. He pointed out that the proof that the Universe was geocentric
presupposed Aristotle’s theory of motion in which the element earth naturally
moved toward the centre of the Universe and, hence, the argument was circular.
Maybe the natural motion of the element earth was toward the centre of the
Earth, in which case that could be anywhere in the Universe. In the fourth
century BC, Heraclides had suggested that the perceived daily rotation of the
stars was due to a rotation of the Earth about its own axis, and Aristotle had
argued that this was impossible. Oresme agreed with Aristotle that the Earth
was stationary, but he criticized Aristotle’s refutation of Heraclides. Aristotle
had argued that if the Earth rotated, there would be a continuous wind from the
east which was not observed. Oresme pointed out that one only had to assume
that the atmosphere also took part in the daily rotation to counter this argument.
In the end, Oresme believed, the choice between believing in a stationary or a
moving Earth had to be a matter of faith.

Oresme was also one of a number of men who questioned Aristotle’s insis-
tence on a finite Universe. Perhaps the sphere of the fixed stars was surrounded

** Oresme wrote on numerous other topics relevant to astronomy. He was fascinated by the
subject of celestial commensurability, i.e. whether or not ratios between celestial motions
could be expressed as ratios of integers (see Grant (1971)).

Buridan was by no means the first to criticize Aristotle’s theory of motion. In the sixth century,
the Greek Christian philosopher John Philoponus suggested that projectiles move due to some
‘incorporeal power’ rather than as a result of forces imparted due to the disturbance of the
surrounding air. Here, we have an early forerunner of our concept of momentum (see, for
example, Toulmin and Goodfield (1965), p. 118, and Cushing (1998), pp. 74-5).

49
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by an infinite expanse of empty space.50 This separation of space and matter was
opposed diametrically to Aristotelian philosophy and was too radical to attract
many adherents. Not until Newton did the independent existence of material
bodies and the space they occupy become accepted.

Peurbach and Regiomontanus

The history of astronomy in the fifteenth century is dominated by two men,
Georg Peurbach and Regiomontanus. The significance of their contributions
comes, not so much from the technical content (their astronomy continued the
medieval tradition), but from the fact that with the introduction of printing into
Europe, their books became the first astronomy textbooks to achieve what might
be described as a mass circulation.”

After receiving his master’s degree from the University of Vienna in 1453,
Georg Peurbach accepted the position of court astrologer to King Ladislas V
of Hungary and later became the imperial astrologer to the Holy Roman
Emperor Frederick III. He is most famous for his New Theories of the Planets,
an astronomical textbook he wrote following a series of lectures he gave in
Vienna in 1454.” The first printed edition was published by Peurbach’s stu-
dent Johannes Miiller (better known as Regiomontanus, Latin for his place of
birth, Konigsberg) in 1472, and the book became very popular, going through
nearly sixty editions in the fifteenth and sixteenth centuries. Peurbach’s work
is based on Ptolemy’s Planetary Hypotheses and is also influenced heavily by
Ibn al-Haitham’s On the Configuration of the World. He described theories for
the Sun, the Moon and the planets, in which each component of the geomet-
rical mechanism was produced by the motion of a separate celestial sphere,
and then provided a theory of precession based on the work of al-Battant and
al-Farghani. A section on Thabit ibn Qurra’s theory of trepidation was added
in about 1460. The fact that Peurbach was aware of the significant role of the
Sun in the geocentric theory is evident from the following passage:

...1it is evident that the six planets share something with the sun in their motions
and that the motion of the sun is like some common mirror and rule of
measurement to their motions.

* Different medieval explanations of what lay beyond the fixed stars are described in Grant
s (1994), Chapter 9, an expansive study of medieval cosmology.
"~ The first printed edition of the Almagest, a rather unsatisfactory medieval Latin version,
appeared in 1515. A new Latin text was printed in 1528 (Boas Hall (1994)).
The Latin title was Theoricae novae planetarums it is translated in Aiton (1987).
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In 1460, at the request of Cardinal Bessarion, the papal legate to the Holy
Roman Empire and himself a scholar of distinction, Peurbach began work on
an abridgment of Ptolemy’s Almagest which, according to Regiomontanus,
he knew almost by heart, and he completed the first six books of his work
before he fell ill and died. Before his death he persuaded Regiomontanus (who
took over Peurbach’s professorship in Vienna) to complete the work, which
he did over the next couple of years. This work, the Epitome of Ptolemy’s
Almagest, which provided a relatively simple summary of Ptolemy’s treatise
and served subsequently as Copernicus’ guide to Ptolemaic astronomy, was
first published 20 years after Regiomontanus’ death, in 1496. Although the
Almagest had been available in Latin translation for over 300 years, it is clear
that it was not read widely and understood until the printing and wide circulation
of Regiomontanus’ Epitome, which also included material from later Arabic
sources such as Jabir.

Before his death, Peurbach had been planning to travel to Italy so that he
could study original Greek manuscripts, and this is precisely what Regiomon-
tanus did for a number of years starting in 1462. On his return, he settled in
Nuremberg and began an ambitious project of translating and publishing the
great scientific works of antiquity. He did translate some Greek works, including
Apollonius’ Conics, but his untimely death put an end to his laudable endeav-
our. Regiomontanus was also the first in the Latin West to produce a systematic
treatment of trigonometry, and he was well aware of how important this subject
was for the study of astronomy. In his work On Triangles of Every Kind,” which
was written in about 1463 but not published until 1533, he wrote:

You, who wish to study great and wonderful things, who wonder about the
movement of the stars, must read these theorems about triangles. Knowing these
ideas will open the door to all of astronomy . . .

Following Islamic scholars, and also Peurbach’s work, Regiomontanus based
his trigonometry on the sine rather than the Greek chord, and considered both
plane and spherical triangles. He also began the move toward the use of the
decimal system by basing his tables on a circle, the radius of which was a power
of 10. There is little conceptually new in On Triangles, much of the work being
taken directly from Arabic sources, " but the quality of the exposition and the
inclusion of clear numerical examples made the work extremely influential.
With the work of Peurbach and Regiomontanus, mathematical astronomy in
Western Europe reached the level of sophistication that the Greeks had achieved
some 1200 years previously. But now there was a stimulus to press on. First, it

52 In Latin, De triangulis omnimodis. A translation can be found in Hughes (1967).
See Hairetdinova (1970).
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was recognized that Ptolemy was far from being the final word on the subject;
even with the refinements of the Islamic astronomers, the models of the Almagest
simply were not accurate enough to match naked-eye observations. Second,
with the advent of the printing press, interest in astronomy was becoming more
widespread. The growing need for sophisticated tools to aid navigation, and an
increasing interest in astrology, created a thirst for knowledge.

Not all astronomers from this period were forward-looking, however. Taking
their lead from Ibn Rushd (Averroés), who had declared the Ptolemaic universe
incompatible with Aristotelian physics, two Italians in the early sixteenth cen-
tury, Girolamo Fracastoro~ and Gianbattista Amico, attempted to resurrect the
homocentric model of Eudoxus—Callippus—Aristotle and make it predict more
accurately the known phenomena. It is quite likely that Fracastoro knew Coper-
nicus as they both studied at Padua at the same time and they may well have
discussed the problems of Ptolemaic astronomy. Fracastoro’s proposed alterna-
tive, described in his Homocentrica (1538), was an attempt to revive the dead.
He ended up with a complex system of seventy-nine spheres which, of course,
retained the same fundamental flaws present in Eudoxus’ original model. Am-
ico’s scheme, contained in On the Motions of the Heavenly Bodies according
to Peripatetic Principles without Eccentrics or Epicycles (1536), which uti-
lized a similar number of spheres but differed in technical detail from that of
Fracastoro, appears to have been arrived at independently.56 Interestingly, both
Fracastoro and Amico made use of geometrical devices equivalent to the Tast
couple.57

The desire to replace the established system with something new was
widespread in the early sixteenth century, but few had the patience or skill
to turn their ideas into a computational scheme that could match Ptolemy for
accuracy. One man, however, spent 40 years doing just that — Copernicus.

% Pracastoro is better known for his work on the spread of contagious diseases and for giving the
disease syphilis its name.

;7 Some details of both models can be found in Dreyer (1953), Chapter XII.

~ See Swerdlow (1972), di Bono (1995).
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The heliocentric universe

Copernicus

The year 1543 marks the beginning of the end for geocentric astronomy. In this
year, shortly before his death, Nicholas Copernicus published On the Revolu-
tions of the Heavenly Spheres, in which the Sun, and not the Earth, lies at the
centre of the Universe.'

Nicholas Copernicus, the youngest of four children, was born in the city of
Torufi on the Vistula in Poland in 1473.” He entered the prestigious University of
Cracow in 1491 where he stayed for 4 years studying the liberal arts, including
a broad range of instruction in astronomy and mathematics. He purchased a
number of fundamental works during this period, including the two books
containing the most up-to-date tables necessary for astronomical calculation:
the 1492 edition of the Alfonsine Tables, and the 1490 edition of Regiomontanus’
Tabulae directionum (the latter a treatise on spherical astronomy). He bought,
also, an edition of Euclid’s Elements.

From 1496 to 1503, he studied at various universities in Italy, including
Bologna, Ferrara, and Padua. Among other things, he studied medicine and

The Latin title is De revolutionibus orbium Caelestium. At least three English translations have
been published and their relative merits are discussed in Swerdlow and Neugebauer (1984),
which is also the source of much of the technical detail concerning Copernican astronomy that
appears here. All quotations from On the Revolutions are taken from Rosen’s translation which
first appeared in 1978 (Copernicus (1992)). Rosen rewrites On the Revolutions in a readable
modern English, rather than sticking religiously to Copernicus’ style, and as such has come in
for some criticism (see Swerdlow (1981b) and the resulting letters (Isis, 72, (1981) pp. 629-30);
see also Swerdlow (1981a) and Toomer’s review of Rosen’s translation in Journal for the
History of Astronomy. 12 (1981), 198-204).

The brief biographical details following are based largely on the accounts given in Dobrzycki
(1973a) and Swerdlow and Neugebauer ((1984)). Kesten (1945) has written a popular
biography and Copernicus’ life and work is the subject of a novel, Doctor Copernicus, by John
Banville (Banville (1976)).

S
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law, learned Greek, and became friendly with Domenico Maria Novara, who
occupied the chair of astronomy at Bologna. He returned to Poland in 1503,
initially assisting the Bishop in Heilsberg in his administrative duties, and then
in 1510 he became a canon at the Frombork (Frauenburg) Cathedral in Warmia
(a small territory also known as Ermland), where he spent the rest of his life.

Early in the sixteenth century, Copernicus was asked, like Regiomontanus
before him, if he would advise the papacy about calendar reform, demands for
which had been growing over the preceding centuries as the errors in the Julian
calendar were recognized. He declined, believing that what was needed was a
reform in astronomy based on new observations so that more accurate calcula-
tions could be made; only then would reforming the calendar be worth while.’

It was not Copernicus’ intention completely to revolutionize astronomy —
though his radical proposal eventually led to just such a revolution — but he did
realize that a major technical change was necessary, since all the minor changes
and alterations to Ptolemy’s theory that had been introduced over the preceding
1000 or so years had still not produced a system accurate enough to conform
with good naked-eye observations. That Copernicus was not trying to start a
great debate about man’s place in the Universe is evident from the fact that On
the Revolutions is not aimed at the general public or, indeed, at educated lay
people, but is written only for those few who were conversant fully with the
technical details of Ptolemaic astronomy. The idea of placing the Sun rather
than the Earth at the centre of the Universe had profound consequences, but
the geometrical models that Copernicus devised so as to transport Ptolemy’s
mathematical astronomy into a heliocentric context did not.

Copernicus was, of course, not the first to suggest amoving Earth (the ideas of
Aristarchus, Heraclides, and Oresme have been discussed earlier, for example)
and, indeed, he did not claim originality in the idea. Many astronomers before
Copernicus also had realized that the role of the Sun was not just like that of

* The Julian calendar, with a leap year every 4 years, implies a tropical year of 365.25 days,
whereas in fact the tropical year is, to three decimal places, 365.242 days. Hence, in 1500 years,
the time that had elapsed between Caesar and Copernicus, the calendar had advanced
1500 x 0.008 = 12 days with respect to the seasons. More seriously, as far as the Church was
concerned, was the fact that computations of the date of Easter, which rely on cycles linking the
motions of the Sun and Moon, were now also in error. The Gregorian calendar, in which 3 leap
years are removed from each 400-year period (corresponding to a tropical year of 365.2425
days) came into use in Catholic countries in October 1582, following the decree of Pope
Gregory XIII that Thursday, 4 October of that year would be followed by Friday, 15 October.
Protestant countries resisted the change and the adoption of the Gregorian calendar took place
at different times in different places (a list can be found in, for example, Richards (1998)).
Britain and its colonies did not adopt the improved calendar until 1752 (Wednesday,

2 September was followed by Thursday, 14 September) and dates after 1582 from calendars
that had not undergone the reform are usually referred to as ‘Old Style’.
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the other planets. Copernicus’ achievement was to take the heliocentric idea of
Aristarchus and incorporate it into a system of Ptolemaic geometry so that it
predicted accurately the phenomena. To Copernicus, the motion of the Earth
was a necessary consequence of his accurate solution to the problem of the
planets: ‘In so many and such important ways, then, do the planets bear witness
to the earth’s mobility.’4 He was still under the spell of circular orbits with
uniform speed, and throughout his work he retains the ancient idea of planets
being carried on celestial spheres, though he avoids the question of whether
these spheres are real or imaginary.5 Copernicus might well be described as
the last of the ancients, a spiritual companion of Aristarchus, Hipparchus, and
Ptolemy. His theory was conceived as a technical modification (albeit a major
one) of classical planetary astronomy, but over the two centuries following its
publication it became the focus of great debates in religion and philosophy, as
well as in science. By changing the role of the Earth in the overall scheme of
things, Copernicus forced people to re-examine their ideas about the relationship
between man and God.”

Was Copernicus aware of the heliocentric theory of Aristarchus? The first
printed edition of Archimedes’ Sand Reckoner did not appear until a year after
Copernicus died. However, the following passage appears in a manuscript of
On the Revolutions that survives to this day, though it was deleted prior to
publication:

The motion of the sun and the moon can be demonstrated, I admit, also with an
earth that is stationary. This is, however, less suitable for the remaining planets.
Philolaus believed in the earth’s motion for these and similar reasons. This is
plausible because Aristarchus of Samos too held the same view according to some
people, who were not motivated by the argumentation put forward by Aristotle and
rejected by him [Heavens, 11, 13—14]. But only a keen mind and persevering study
could understand these subjects. They were therefore unfamiliar to most
philosophers at that time, and Plato does not conceal the fact that there were then
only a few who mastered the theory of the heavenly motions.’

Thus, Copernicus certainly did know of the Greek heritage for the heliocentric
hypothesis. It is, however, not clear whether he knew of Oresme’s work on the
rotation of the Earth.

¢ COPERNICUS On the Revolutions, Book I, Chapter 11.

" The question as to whether Copernicus believed in the physical reality of the celestial spheres
has been a source of some controversy. For more details, see Westman (1980), Aiton (1981),
Jardme (1982), Grant (1987).
® The argument of Kuhn (1957) that Copernicus was influenced by the Neo-Platonic tradition of
Sun worship is refuted by Rosen (1983).

7 COPERNICUS On the Revolutions, 1, 11. Further details are given in Rosen’s notes in
Copernicus (1992) (see also Africa (1961)).
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Copernicus made a number of his own observations, but they are not notable
for their accuracy. In On the Revolutions, he described the instruments that he
used for his observations, all of which were known in ancient times; indeed,
Copernicus’ descriptions of the instruments are based on those in Ptolemy’s Al-
magest. He relied heavily also on the observations of others, particularly those
of Ptolemy (in whom Copernicus put rather too much faith) and also Islamic as-
tronomers such as al-Battant and al-Zarqali. In Copernicus’ time, a theory was
considered accurate if it produced results in agreement with observations within
the limit of observational accuracy, which was about 10’ of arc, and this was the
sort of accuracy that Copernicus strove for. He did not succeed, but the tables
constructed from Copernicus’ mathematical astronomy by Erasmus Reinhold —
the Prutenic or Prussian Tables (1551) — were an improvement over the pre-
ceding Alfonsine Tables from the thirteenth century, and remained a standard
source of information until superseded by Kepler’s Rudolphine Tables in 1627.
This improvement was due, not to his geometrical models being intrinsically
more accurate than Ptolemy’s (they are not)8 but simply because he recom-
puted many of the parameters that must be entered into the models in order
to construct the tables and, since many of these had changed since the time of
Ptolemy, the final results were more accurate.

The Commentariolus

Copernicus developed his heliocentric theory while in Italy. The first exposi-
tion of his theory was a short sketch (commentariolus) which was written in
about 1507, circulated in handwritten form to a few scholars, but never printed
during Copernicus’ life. The theory presented in this brief document differs
in several essential features from the one that appeared eventually in On the
Revolutions, and thus represents a preliminary stage in Copernicus’ develop-
ment of a heliocentric theory. No mention of the Commentariolus is made in
On the Revolutions, and no manuscripts have been found among his own books
and papers, so it is possible that, by the time he wrote On the Revolutions, he
did not wish to be associated with his earlier work. All the existing manuscripts
of the Commentariolus are thought to be descended from a copy received in
1575 by Tycho Brahe.’ Copernicus clearly laid out the assumptions on which
he had based his work:

Z See, for example, Babb (1977).
The passage of this work from Copernicus to Tycho, via a number of other astronomers, has
been traced by Dobrzycki and Szczucki (1989). The title appearing on existing manuscripts
translates as Nicholas Copernicus, Sketch of his Hypotheses for the Heavenly Motions. The
authenticity of this title has been doubted widely on the basis that Copernicus would not have



The Commentariolus 123

1. There is no one center of all the celestial circles or spheres.

2. The center of the earth is not the center of the universe, but only of gravity and of
the lunar sphere.

3. All the spheres revolve about the sun as their mid-point, and therefore the sun is
the center of the universe.

4. The ratio of the earth’s distance from the sun to the height of the firmament is so
much smaller than the ratio of the earth’s radius to its distance from the sun that the
distance from the earth to the sun is imperceptible in comparison with the height of
the firmament.

5. Whatever motion appears in the firmament arises not from any motion of the
firmament, but from the earth’s motion. The earth together with its circumjacent
elements performs a complete rotation on its fixed poles in a daily motion, while
the firmament and highest heaven abide unchanged.

6. What appear to us as motions of the sun arise not from its motion but from the
motion of the earth and our sphere, with which we revolve about the sun like any
other planet. The earth has, then, more than one motion.

7. The apparent retrograde and direct motion of the planets arises not from their
motion but from the earth’s. The motion of the earth alone, therefore, suffices to
explain so many apparent inequalities in the heavens.

His programme was to represent the motions of the heavenly bodies using
uniform circular motions. This he considered to be the true goal of astronomy,
and he noted that all previous attempts had been unsatisfactory in some way.
The concentric spheres of Eudoxus failed accurately to predict the phenomena
and, while Ptolemy had produced an accurate theory, it violated the principle of
uniform circular motion through the introduction of the equant. The system of
eccentrics and epicycles that Copernicus created was designed to rectify these
problems. Of course, as Kepler later came to realize, it was precisely because
the equant mechanism violated the principle of uniform circular motion that it
was a step in the right direction.

The first three assumptions, in which the heliocentric nature of the system
is stated clearly, put Copernicus in immediate conflict with the universally held
Aristotelian view that the Earth was the centre of rotation for all the heavenly
bodies, and assumption 4 accounts for the fact that no annual parallax had
been observed for the fixed stars. The ‘circumjacent elements’ referred to in
assumption S are the atmosphere and the waters that lie on the surface of the
Earth, and the final two assumptions describe how the complex motion of the

presented his system as a mere hypothesis. However, a thorough investigation of Copernicus’
use of the term ‘hypothesis’ throughout his astronomical writings led Rosen (1959) strongly to
criticize this view. The work was first published in Warsaw in 1854 (Koyré (1973)) but it took
some time before a proper understanding of its place in the development of Copernicus’ ideas
was reached. For example, in Dreyer’s History of Astronomy (Dreyer 1953) written in 1906, the
Commentariolus is treated as a summary of the heliocentric system written after On the
Revolutions. Quotations from the Commentariolus are taken from the translation in Rosen
(1959).
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Sun and planets are just manifestations of the motion of the Earth. No detailed
explanations were given in the Commentariolus, but it is clear from the text
that when Copernicus wrote it he had already planned On the Revolutions. The
Commentariolus is in many ways a rough outline of Copernicus’ mathematical
theory, and when it was written he may well have believed that it would be a
simple matter to add the mathematical demonstrations to his sketched-out the-
ory. As it turned out, however, On the Revolutions became a far more extensive
undertaking than envisaged originally.

The Commentariolus had two major shortcomings. First, Copernicus did
not attempt to provide proof for the fundamental assumptions on which the
work was based, preferring simply to state them as axioms. He must soon
have realized that this would not be sufficient for his audience and that he
would have to provide supporting evidence. In the end, the evidence that he
did come up with in On the Revolutions was hardly convincing, something of
which he was all too painfully aware. Second, the numerical parameters on
which the models in the Commentariolus were based were largely those of the
Alfonsine Tables, and these were simply not accurate enough for Copernicus’
purposes. Thus, he realized that new parameters would have to be derived from
observations.

The actual models that Copernicus used in the Commentariolus, which were
similar but not identical to those appearing later in On the Revolutions, will not
be discussed here, but one aspect is worthy of note. The theories of the Moon and
planets are pretty much identical to those of Ibn al-Shatir, though of course Ibn
al-Shatir’s planetary theories were set in the context of a geocentric universe and
the numerical parameters are different. Is this a coincidence? From the number
of similarities, it seems clear that Copernicus must have come across the work
of the Maragha observatory somehow, and there is evidence that this Islamic
astronomy was known in Italy in the late fifteenth and early sixteenth centuries.
Also, as we shall see below, Copernicus made extensive use of geometrical
devices equivalent to the TusI couple. Thus, it appears likely that Copernicus
came across these geometrical theories while on his travels.”

10 According to Swerdlow and Neugebauer ((1984)) ‘the question therefore is not whether, but
when, where, and in what form he learned of the Maragha theory’ (see also Abbud (1962)).
The problem of how Copernicus acquired the techniques he used is discussed by di Bono
(1995), who suggests some alternative sources. For example, Veselovsky (1973) thought it
rather more likely that Copernicus generated his equivalent of the Tiist couple from remarks
made by Proclus in his Commentary on the First Book of Euclid. Rosiniska (1974) discusses
how Islamic geometrical models could have found their way to Cracow in the fifteenth century,
and Kren (1971) suggests that the TiisT couple was described by Oresme (albeit badly) in his
Questiones de spera, a series of questions concerning Sacrobosco’s On the Sphere written
some time before 1362.



On the Revolutions 125

After describing the motions of the Earth, Moon, and planets, Copernicus
concluded proudly:

Altogether, therefore, thirty-four circles suffice to explain the entire structure of
the universe and the entire ballet of the planets.

Subsequently, however, the examination of more observational data led Coper-
nicus to realize that the theory presented in the Commentariolus was insufficient
to predict the positions of the heavenly bodies accurately over long periods, and
he had to discard many of the geometrical constructions and replace them with
more complicated devices. !

On the Revolutions

Copernicus’ move to Frombork in 1510 led to a substantial increase in his
administrative duties as a canon of the Chapter of Warmia, and he was also a re-
spected physician, medicine being a subject he had studied in Italy. It was against
this background that he began to write his extensive exposition of heliocentric
astronomy that was to become On the Revolutions. He needed considerably
more observational data, which he proceeded to collect over the years between
1512 and 1529. For example, a series of observations of the Sun performed by
Copernicus in 1515 and 1516 led him to the conclusion that the eccentricity of
the Sun’s orbit was not constant as he had previously assumed.

Much of On the Revolutions essentially was complete by 1530, but Coper-
nicus delayed publication. Part of the reason was his inability to find any direct
evidence for the Earth’s motion, and he realized that without this he was going
to find it very difficult to convince the sceptics. In the Letter of Dedication to
Pope Paul III he wrote:

... the scorn which I had reason to fear on account of the novelty and
unconventionality of my opinion, almost induced me to abandon completely the
work which I had undertaken.

Despite Copernicus’ reticence, news of his work spread and aroused a great deal
of interest. In 1539, Georg Rheticus, a young German professor, travelled to
Frombork to find out more. He brought with him a number of recently published
books including the 1538 Greek edition of the Almagest which was much more

" Ttis not easy to state precisely how many circular motions were required in Ptolemy’s system
or Copernicus’ final theory. A summary of different opinions can be found in Cohen (1985),
p- 119. Contrary to what is often alleged, the system that was described in On the Revolutions
actually is marginally more complex than that in the Almagest.
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accurate than the Latin version Copernicus had been using, and Regiomontanus’
On Triangles.

Rheticus became an enthusiastic supporter of Copernicus’ theory and he
wrote an extensive summary, published in 1540 in the form of a letter to Johannes
Schoner — an astronomer and publisher from Nuremberg — and which now is
known usually by the abbreviated title Narratio prima or First Report.12 The
publication of this concise well-written summary of Copernicus’ theory led to a
surge in interest, and may well have been at least partly responsible for inducing
Copernicus to publish his work. The First Report was a very useful introduc-
tion to Copernican astronomy. In it, Rheticus stressed that Copernicus was
attempting to reproduce celestial motions in accordance with the Pythagorean
principle of uniform circular motions, and that he had ‘liberated’ astronomy
from the equant. The work, which also included biographical information about
Copernicus, was nearly always included in published editions of On the Rev-
olutions, and was later published with Kepler’s Secret of the Universe to help
the reader understand Copernican astronomy.

Rheticus left Frombork in 1541 with a manuscript of On the Revolutions
and set about arranging for its publication. The fact that Copernicus — who
was worried about being misunderstood and ridiculed for his views — handed
over his manuscript to Rheticus shows that a very high degree of trust had
developed between them. In October 1542, when he took up his professorship
at Leipzig, Rheticus entrusted the responsibility for the printing of Copernicus’
treatise to Andreas Osiander, a Lutheran theologian closely associated with the
distinguished Nuremberg printer Johann Petreius. Osiander had previously in
1541 written to Copernicus suggesting that in order to ‘mollify the peripatetics
and theologians whose opposition you fear’” some words be added to the effect
that the heliocentric theory was merely a hypothesis which, even if wrong,
accurately reproduced the phenomena. Copernicus, of course, did not agree,
since it had always been his aim to demonstrate the true structure of the planetary
system, and as a computational scheme Ptolemy’s astronomy, with parameters
updated to take account of more recent observations, was perfectly adequate.
However, Osiander took it upon himself to add an unsigned preface entitled To
the Reader Concerning the Hypothesis of this Work in which he remarked:

For these hypotheses need not be true nor even probable. On the contrary, if they
provide a calculus consistent with the observations, that alone is enough. . . . For

: Translated in Rosen (1959).
" Quoted from Rosen’s commentary on the front matter of On the Revolutions in Copernicus
(1992).
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this art, it is quite clear, is completely and absolutely ignorant of the causes of the
apparent nonuniform motions. And if any causes are devised by the imagination, as
indeed very many are, they are not put forward to convince anyone that they are
true, but merely to provide a reliable basis for computation. . . . So far as hypotheses
are concerned, let no one expect anything certain from astronomy, which cannot
furnish it, lest he accept as the truth ideas conceived for another purpose, and depart
from this study a greater fool than when he entered it.

It is not known whether Copernicus ever saw this unwanted addition to the text,
but Rheticus was furious and tried to force the publication of a corrected edition.
This action failed, however." It was probably Osiander who was also behind
the insertion on the title page of the warning: ‘Let no one untrained in geometry
enter here’, a phrase reputed to have been inscribed above the entrance to Plato’s
Academy. The printing of On the Revolutions was completed in 1543 shortly
before the author’s death in May of that year.

Probably about 4-500 copies were printed originally, of which the where-
abouts of as many as 250 are known today! Rheticus’ copy is one of the known
ones and contains a poem (in Greek) on the flyleaf, hand written by its author
Joachim Camerarius from Leipzig. The poem describes the following conver-

. 15
sation:
STRANGER: What is this book?
PHILOSOPHER: A new one, with all kinds of good things in it.
STRANGER: O Zeus! How great a wonder do I see!

The earth whirls everywhere in aethereal space.
PHILOSOPHER: But, do not merely wonder, nor condemn a good thing

as the ignorant do before they understand,

but examine and ponder all these things.

Throughout On the Revolutions, Copernicus uses Ptolemy’s, often difficult,
procedures to turn observational data into the numerical parameters required
in his geometrical models, and in this he was helped greatly by Regiomon-
tanus’ Epitome of Ptolemy’s Almagest. Copernicus was a competent mathe-
matician, but not a great one, and what Copernicus did not do, and what sets
Ptolemy’s achievements apart from those of Copernicus, was to deduce mod-
els from the observations. The theoretical models Copernicus used were, in

"* The fact that Osiander, rather than Copernicus, was the author of the preface generally was not
appreciated at the time. Kepler found out from a friend in Nuremberg and printed the
information in 1609, though the authorship has been attributed wrongly to Copernicus on
numerous occasions since then. Osiander’s argument was not devised in response to
Copernicus’ revolutionary idea. The same beliefs concerning the nature of astronomical
hypotheses had been held widely by ancient Greek philosophers and preserved through the

s works of, for example, Maimonides and St Thomas Aquinas (see Duhem (1969)).

" See Gingerich (1992), Chapter 10.
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essence, the same as Ptolemy’s and, instead of devising new ones, he concen-
trated on producing a new physical interpretation with the Sun at the centre of
the Universe, and on correcting the underlying geometrical parameters.m Had
Ptolemy been rather more forthcoming in explaining how he came up with his
models, Copernicus might have been persuaded to spend time looking for new
ways of fitting mathematical schemes to the known phenomena, but as it was,
it was left to Kepler to discover, from a careful analysis of observational data,
that a new mathematical model was required.

Copernicus did not make any original contributions to trigonometry, but the
trigonometric theorems that he presented in Book I of On the Revolutions were
well explained and quite wide-ranging, and Rheticus published them separately
in 1542. Copernicus’ trigonometry is based entirely on chords and sines, though
he refers to the latter as half-chords subtending double arcs, and he notes that
‘in demonstrations and calculations half-lines are used more frequently than
whole lines’.” Ptolemy’s table of chords in the Almagest was based on a circle
of radius 60 and the use of sexagesimal fractions, but by the sixteenth century the
Hindu-Arabic numerals had been introduced into Europe and Copernicus used
these since ‘this numerical notation certainly surpasses every other, whether
Greek or Latin, in lending itself to computations with exceptional speed’."
However, decimal fractions did not come into common use until they were
popularized by the Dutch mathematician and engineer Simon Stevin” and in
On the Revolutions Copernicus constructed a table of sines in intervals of 10’
(following closely the method used by Ptolemy) based on a circle of radius
100 000. By taking such a large radius, Copernicus could work entirely with
integers in his table and still ‘exclude any obvious error’.”

The claim has been made that, apart from the philosophical section on the motion of the Earth,
On the Revolutions is little more than a reshuffled version of the Almagest (see de Solla Price
(1962)).

COPERNICUS On the Revolutions, 1, 12. 18 CoPERNICUS On the Revolutions, 1, 12.
Stevin was not the only advocate of decimal fractions around this time, notable also was Viete.
However, it was Stevin’s little book The Tenth, published in both Dutch and French in 1585,
that brought about the widespread use of the system. Stevin’s notation was fairly clumsy; our
modern notation is due to Napier in 1616 (see, for example, Boyer (1989), p. 354).
Interestingly, Stevin was one of the few early advocates of Copernicus’ heliocentric theory.
COPERNICUS On the Revolutions, 1, 12. The table of sines that appears in the short work
published by Rheticus in 1542 is not the same as that which appears in On the Revolutions. It is
constructed in intervals of 1’ and based on a radius of 107. Rheticus’ work on trigonometry did
not stop here, though he died before he had completed his major work, a collection of tables
for all six trigonometric functions built around a table of sines based on a circle of radius 10"
and constructed in intervals of 45”. This work, the most important contribution to trigonometry
written in the sixteenth century, was completed by Rheticus’ pupil L. Valentine Otho and
published posthumously in 1596 under the title Opus Palatinum de triangulis (the title
acknowledged the financial help of the Count Palatine, Frederick IV).

20
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The motion of the Earth

On the Revolutions begins with some well-established arguments for the
sphericity of the Universe, the heavenly bodies, and the Earth, and then Coperni-
cus reiterates one of the fundamental tenets of theoretical astronomy as created
by the ancient Greeks, i.e. that ‘the motion of heavenly bodies is uniform, eter-
nal, and circular, or compounded of circular motions’.” His only justification
for this view is the Aristotelian statement that the motion appropriate to a sphere
is rotation in a circle. But, Copernicus went on to say, if the Earth is spherical
should we not consider the possibility that it, too, possesses circular motion.
After explaining the ancient arguments for a stationary Earth, he refuted them,
largely on the ground that if the Earth does not move, the heavens, due to their
immense size, would have to rotate at an implausibly fast rate.

Why then do we still hesitate to grant [the earth] the motion appropriate by nature

of its form rather than to attribute a movement to the entire universe, whose limit is
22

unknown and unknowable.

Copernicus also dismissed Ptolemy’s objections to a rotating Earth, which are
largely based on the effect such a rotation would have on atmospheric phenom-
ena. His refutation involved a considerable reworking of Aristotelian physics:
discarding those features which do not fit well with a rotating Earth, while re-
taining those he could use to support his argument. Copernicus concluded that
it is more likely that the Earth moves than that it is at rest.

The motion of the Earth was a necessary consequence of Copernicus’ math-
ematical astronomy, but his arguments justifying it are no more convincing
than Aristotle’s reasons for a stationary Earth. It is not surprising that the vast
majority of people, who did not have the technical expertise to delve further
into Copernicus’ mathematical world, remained unconvinced.”

After explaining why it is sensible to consider a moving Earth, Copernicus
then discussed the order of the heavenly spheres. There had been significant
differences of opinion over the two preceding millennia as to the positions of the
spheres of Venus and Mercury. For example, Plato put them both above the Sun,
Ptolemy put them both below the Sun, and al-Bitriijt placed Venus above and

21 .
COPERNICUS On the Revolutions, 1, 4.

2 COPERNICUS On the Revolutions, 1, 8. To a believer in Aristotle’s universe, which was not
infinite but of finite size, the motion of the heavens did not cause a problem because that was
their natural state, whereas the Earth, being heavy, would need a great force to set it in motion.
It is very difficult to put oneself in the position of a geocentric astronomer faced with trying to
decide between the Copernican idea and their own entrenched beliefs. Whatever the merits of a
new approach, there is a cognitive barrier that needs to be negotiated before one can accept it.
This and related ideas are explored in Margolis (2002).

23



130 The heliocentric universe

Mercury below. Copernicus also mentioned Martianus Capella (see p. 109) who
asserted that Mercury and Venus orbited the Sun rather than the Earth. These
disagreements arose because the planets traditionally were ordered according
to their zodiacal periods, and the average periods of revolution of Mercury,
Venus, and the Sun around the zodiac are all the same, i.e. 1 year. Copernicus
criticized Ptolemy’s reasoning as follows:

Ptolemy argues also that the sun must move in the middle between the planets
which show every elongation from it and those which do not. This argument carries
no conviction because its error is revealed by the fact that the moon too shows
every elongation from the sun,”

and concluded that:

Either the earth is not the centre to which the order of the planets and spheres is
referred, or there really is no principle of arrangement nor any apparent reason why
the highest place belongs to Saturn rather than Jupiter or any other planet.”

He was then in a position to present his schematic view of the Universe, with
the planets ordered according to their periods of revolution about the Sun, and
to proclaim that:

In this arrangement, therefore, we discover a marvelous symmetry of the universe,
and an established harmonious linkage between the motion of the spheres and their
size, such as can be found in no other way. For this permits a not inattentive
student to perceive why the forward and backward arcs appear greater in Jupiter
than in Saturn and smaller than in Mars, and on the other hand greater in Venus than
in Mercury. This reversal in direction appears more frequently in Saturn than in
Jupiter, and also more rarely in Mars and Venus than in Mercury. Moreover, when
Saturn, Jupiter and Mars rise at sunset, they are nearer to the earth than when they
set in the evening or appear at a later hour. But Mars in particular, when it shines all
night, seems to equal Jupiter in size, being distinguished only by its reddish colour.
Yet in the other configurations it is found barely among the stars of the second
magnitude, being recognized by those who track it with assiduous observations. All
these phenomena proceed from the same cause, which is the earth’s motion.”

By considering the Earth as a planet, rotating about its axis once a day while
orbiting the Sun once a year, Copernicus could explain, at least qualitatively,
many of the obvious irregularities in the motions of the other planets. He did
not bother to elucidate the above remarks with further comment; this had to
wait until the detailed quantitative explanation that appears later. The non-
mathematical reader had to take Copernicus’ conclusions on trust.

24 . .
- COPERNICUS On the Revolutions, 1, 10. 25 COPERNICUS On the Revolutions, 1, 10.
“ COPERNICUS On the Revolutions, 1, 10.
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Fig. 5.1. Retrograde motion for (@) superior and (b) inferior planets in a heliocen-
tric universe.

Figure 5.1(a) demonstrates schematically how the annual motion of the Earth
leads to retrograde arcs in the path of a superior planet. As the Earth moves
around the Sun (for simplicity we assume that its orbit is a circle) beginning
from the point E, the planet moves around its orbit beginning from the point P.
The observed position of the planet against the backdrop of the stars at a given
time is determined by the direction of the line joining the Earth and the planet
and, as the diagram illustrates this can lead to a retrograde loop typical of
planetary motions. The diagram also shows why periods of retrograde motion
always occur when the planet is in opposition to the Sun and why it is at these
positions that the planets, being at their closest approach to the Earth, appear
brightest. Figure 5.1(b) illustrates retrograde motion for inferior planets in a
heliocentric universe, and shows why this occurs when the planet lies directly
between the Earth and the Sun (at inferior conjunction).

The large irregularities in the motions of the planets are not observed in the
fixed stars and so, Copernicus concluded, they must be a vast distance away. If
the Earth is orbiting the Sun then, as Archimedes had made clear, one would
expect to detect stellar parallax, but none had been observed in Archimedes’
time and this had not changed by the mid sixteenth century when astronomers
could make observations accurate to within 10-15" of arc. If we take the radius
of the Earth’s orbit to be 1200 Earth radii (Ptolemy’s Earth—Sun distance) and
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Fig. 5.2. The tilt of the orbit of the Earth.

insist that any stellar parallax is less than 10’ of arc, we are led to the conclusion
that the fixed stars must be of the order of 1000000 Earth radii away. To
Copernicus, this was a necessary consequence of his planetary theory, but to
many others, brought up to believe that the stars were just outside the sphere of
Saturn about 20 000 Earth radii away, this was yet another reason not to take
Copernicus seriously. This situation only got worse in the years following the
publication of On the Revolutions. By the end of the sixteenth century, Tycho
Brahe was making observations accurate to within 4’ of arc and still did not
observe a stellar parallax. In fact, the distance to the nearest star is over 6 X 10°
Earth radii and the associated parallax is less than 1 arc-second.”

‘We now turn to the precise nature of the motion of the Earth which, according
to Copernicus, is threefold. The first motion, the daily rotation of the Earth about
its axis, is straightforward and accounts for the perceived rotation of the heavens
once each day. Now the Sun, as viewed from the Earth, also possesses an annual
motion around the ecliptic that is inclined at an angle ¢ to the celestial equator.
Copernicus showed that the same effect results if the Earth orbits the Sun once
per year with its equatorial plane making the angle ¢ with the plane of its orbit.
This is illustrated schematically in Figure 5.2.

However, Copernicus viewed this annual motion as being made up from two
rotations, due to his belief that the Earth was carried around the Sun on one
of his celestial spheres. If the annual motion of the Earth around the Sun were
simply a single rotation then, Copernicus argued, the axis of the Earth would
necessarily take part in that rotation. But this is not what happens — the direction

7 Stellar parallax was first measured, long after the invention of the telescope, in the 1830s (see
note 7, p. 357). The first direct experimental confirmation of the motion of the Earth actually
came from a quite different source — the discovery of the aberration of starlight in 1728 (see
p- 307).
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of the axis of the Earth remains constant with respect to the fixed stars — and so
Copernicus introduced a third rotation about a line perpendicular to the orbital
plane through the centre of the Earth that he called the ‘motion of the inclination’
and which was equal and opposite to the second, so that the axis of the Earth
does not rotate. In fact, the rotation rates in Copernicus’ scheme were only
approximately equal, the rotation of the axis of the Earth being slightly greater
than its annual rotation rate so as to account for the precession of the equinoxes.
Since the axis of the Earth is, in effect, wobbling, Copernicus advocated the use
of the fixed stars, rather than the equinoxes, as the correct frame of reference
for the description of astronomical phenomena.

Nowadays, we are not constrained to think of Copernicus’ second rotation
as if the Earth were attached rigidly to a revolving sphere, and so it is more
natural to think of the motion of the Earth, at least as far as we have discussed
it so far, as being made up of the daily rotation about its axis, its annual motion
around the Sun, and the slow rotation of its axis about the poles of the ecliptic
once every 26 000 years or so.

Because of the discrepancy between Ptolemy’s value for precession (1° in
100 years) and those of others (1° in 66 years according to al-Battant and I° in
71 years according to Copernicus), and the discrepancy between the values of
the obliquity used by ancient and Islamic astronomers (23° 51’ 20” according
to Ptolemy and 23° 35’ according to al-Battant), Copernicus believed that these
quantities were variable:

When [Hipparchus] was scrutinizing the length of the year more intensely, he found
that as measured with reference to the fixed stars, it was longer than when
measured with reference to the equinoxes or solstices. Hence he thought that the
stars too had a motion in the order of the zodiacal signs, but a very slow motion
which could not be perceived immediately. Now however, with the passage of time
it has become absolutely clear. . . . Moreover the motion is found to be

nonuniform. . . . Besides, another marvel of nature supervened; the obliquity of the
ecliptic does not appear as great to us as it did before Ptolemy. . . . Now the
measurement of this motion and the explanation of its variation were not known to
earlier [astronomers]. The reason is that the period of its revolution is still
undiscovered on account of its unforeseeable slowness. For in so many centuries
since it was discovered by mortal man, it has completed barely 1/15 of a circle.
Nevertheless, so far as I can, I shall clarify this matter by means of what I have
learned about it from the history of the observations down to our time.”

Following the long-standing tradition begun by Thabit ibn Qurra, but with
virtually no evidence to support the view, Copernicus believed that these two

* COPERNICUS On the Revolutions, 111, 1.
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Fig. 5.3. Copernicus’ theory of precession.

functions were oscillatory functions of time and, because the value for preces-
sion appeared to have a minimum around the time of al-Battani but no such
minimum was observed in the obliquity, Copernicus chose to make the period
of the obliquity exactly twice the period of variation in precession, the latter
being 1717 years. Copernicus measured the obliquity as 23° 28’ 24” and, even
though the data did not support his argument, he claimed that the maximum
and minimum values of ¢ over its 3434 year cycle were 23° 52" and 23° 28,
respectively. All the tables in On the Revolutions that are dependent on the value
of ¢ are computed for ¢ = 23° 28’ with a correction column provided to enable
the user to adjust for larger values of €.

The actual mechanism that Copernicus used to model the variations in pre-
cession and obliquity is shown in Figure 5.3. A uniform rate of precession
corresponds to a steady revolution of the north pole N around the pole of the
ecliptic E as shown in Figure 5.3(a), and in this model the obliquity of the eclip-
tic, being determined by the distance | E N|, is constant. The various theories of
trepidation that were proposed by Islamic astronomers used, in effect, a polar
epicycle with the mean north pole N rotating around E and the actual north pole
rotating about a small circle centred at N, as shown in Figure 5.3(b), and in this
case the periods of variation of precession (determined by the angle N E N') and
of the obliquity (determined by the distance | E N |) are the same. But Copernicus
wanted a mechanism by which the period of the distance | EN| was twice that
of /NEN, and the one he came up with is shown in Figure 5.3(c). Instead of
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moving around a circle centred on N, the north pole follows a figure-of-eight-
type path built up from two perpendicular oscillations: the motion parallel to
EN is controlled by the angle 6 and the inner circle, whereas the motion per-
pendicular to this line is governed by the angle 260 and the outer circle.

In fact, things are rather more complicated than this because these figures
should be drawn on a sphere rather than on a flat surface, but Copernicus argued
that the motions are small enough for the approximation not to lead to notice-
able errors. Copernicus used the equivalent of the Tuist couple to produce the
two rectilinear motions required, so that everything was built up from uniform
circular motions. Interestingly, Nasir al-Din al-Tuist had suggested earlier that
his mechanism might be used for just such a purpose:

The same method may also be used for trepidation and for the movement of the
obliquity in latitude for the ecliptic orb if the fact of these two motions and their
variability is ascertained.”

The period of the mean precession (i.e. the time it takes for the mean north
pole to complete 1 revolution about the pole of the ecliptic) was calculated by
Copernicus as 25 816 Egyptian years (an Egyptian year being 365 days) which
is very close to the modern value. The values computed from Copernicus’
elaborate theory give excellent agreement with the observational data that he
was attempting to reproduce.

Finally, Copernicus provided his theory for the shape of the orbit of the
Earth. This can be thought of as an extension of the solar theory of Hipparchus
which, if transferred to a heliocentric viewpoint, consists simply of the Earth
moving round the Sun on an eccentric circle. Copernicus believed that the
orbit of the Earth was subject to two further inequalities. The first of these
concerned the eccentricity of the orbit of the Earth, which from historical
measurements he thought was variable, and he made the highly questionable
assumption that it oscillated with the same period as the obliquity. Second,
there was the motion of the aphelion of the Earth. As we have already seen
(seep.97) al-Zarqali discovered that the apogee of the Sun had a slow steady mo-
tion with respect to the fixed stars, but Copernicus misunderstood al-Zarqali’s
theory and, instead, thought that the apogee moved non-uniformly.'m In or-
der to model this non-uniform motion of the apsidal line and the variable
eccentricity, Copernicus modified Hipparchus’ scheme as shown in Figure 5.4.

» NASIR AL-DIN Memoir on Astronomy. Translation from Ragep (1993). It seems plausible that
Copernicus got the idea of using the couple in this way from the astronomers of the Maragha

0 observatory (see note 10, p. 124).

~ Copernicus knew of al-Zarqali’s work from the account in the Epitome of Peurbach and
Regiomontanus. Unfortunately, this was rather muddled (Toomer (1969)).
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Fig. 5.4. Copernicus’ theory for the orbit of the Earth.

The Earth E orbits uniformly about O, completing 1 revolution in 1 sidereal
year, which Copernicus computes to be 365 days 6 h 9 min 40 s. The centre of
the orbit of the Earth is no longer fixed but rotates around C with |CO| =r;
say, completing 1 revolution in 3434 years, and C rotates around the Sun §
with |SC| = r;, completing 1 revolution in just over 53000 years. The mo-
tion around the Sun is linked to the precession/obliquity mechanism shown in
Figure 5.3 by assuming that SC O is a straight line when 6 = 0 and that this
was the case in 65 BC. Copernicus took the radius of the Earth’s orbit |O E|
to be 10000 units and determined from the observed values of the eccentricity
at various times that r; = 369, r, = 48. Thus, the eccentricity varies between
0.0369 + 0.0048 = 0.0417 &~ 1/24 and 0.0369 — 0.0048 = 0.0321. The aphe-
lion A oscillates about the mean aphelion A with a period of 3434 years, while
A takes 53 000 years to complete 1 revolution of the Sun.

In the First Report, Rheticus added his own astrological interpretation to the
motion of the centre of the orbit of the Earth:

I shall add a prediction. . .. Thus, when the eccentricity of the sun was at its
maximum [i.e. when SC O was a straight line], the Roman government became a
monarchy; as the eccentricity decreased, Rome too declined, as though aging, and
then fell. When the eccentricity reached the boundary and quadrant of mean value
[i.e. when SC O was a right angle], the Mohammedan faith was established;
another great empire came into being and increased very rapidly, like the change in
eccentricity. A hundred years hence, when the eccentricity will be at its minimum,
this empire will complete its period. In our time it is at its pinnacle from which
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equally swiftly, God willing, it will fall with a mighty crash. We look forward to the
coming of our Lord Jesus Christ when the centre of the eccentricity reaches the
other boundary of mean value, for it was in that position at the creation of the
world. . . . Thus it appears that this small circle is in very truth the Wheel of
Fortune, by whose turning the kingdoms of the world have their beginnings and
vicissitudes.”

In describing the model illustrated in Figure 5.4 we have assumed tacitly that
the Sun is at rest with the points C and O moving around small circles. However,
it is possible to achieve precisely the same geometrical relationship between S
and E by assuming that the centre of the orbit of the Earth O is motionless with
S and C revolving around it on small circles. Copernicus realized that there
was no way of saying which of O and S actually was at rest at the centre of the
Universe, but it is quite clear that he believed this honour belonged to the Sun.

One of Copernicus’ reasons for assuming a moving Earth is greatly to sim-
plify the theories of the planets. But that would be of little use if it were not
possible to devise a theory of the motion of the Earth that represented accu-
rately the observed phenomena. This Copernicus achieved with a considerable
degree of success, but the resulting scheme could hardly make any claim to
simplicity. The theory is also full of holes. The values of many of the numerical
parameters simply are assumed by Copernicus, particularly when the necessary
mathematics would otherwise have been beyond him, and there are numerous
arithmetical and historical inaccuracies.

The motion of the Moon

The lunar theory is much more straightforward than that for the Earth, since
the observed motion of the Moon does not possess the same gross irregularities
as the orbits of the planets. Copernicus agreed with the ancients that its motion
takes place round the Earth; in fact, he went further. Since the Moon was now the
only heavenly body orbiting the Earth, Copernicus attributed a certain similarity,
or kinship, to the two bodies. This represents a sharp contrast with Aristotelian
cosmology in which all celestial bodies were intrinsically different from the
Earth. Copernicus objected to Ptolemy’s theory of the Moon on precisely the
same grounds as Ibn al-Shatir had done 200 years before him, i.e. that it violated
the principle of uniform circular motion and it predicted a manifestly incorrect
change in the apparent diameter of the Moon during the course of a month.
The model that Copernicus used for the longitude of the Moon is, in fact,
identical to that of Ibn al-Shatir and the same as the one he had used previously

' RuETICUS First Report. Quoted from Rosen (1959).
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in the Commentariolus, and the latitude theory is Ptolemy’s. In his earlier
work, Copernicus simply had adapted numerical parameters from the Alfonsine
Tables, but in Book IV of On the Revolutions he set about deriving a new set
of parameters for the lunar theory. He also discussed the parallax of the Moon,
the distances and sizes of the Sun and Moon, and his theory of eclipses.

Whereas Ibn al-Shatir had used »; = 6; 35 and r, = 1; 25 for the radii of
the two lunar epicycles, based on a deferent radius of 60, Copernicus computes
r1 = 1097 and r, = 237 based on a deferent radius of 10 000. These parameters
are almost identical, which is not surprising, since both men were attempting
to reproduce essentially the same phenomena and the lunar parameters are
not subject to the same long-term variations as those of the Sun. Copernicus
worked out the greatest and least distances of the Moon as 68 % and 52% Earth
radii, respectively (Ibn al-Shatir had 68; 0 and 52; 0), from which the Moon’s
apparent diameter should vary between 37’ 34” and 28’ 45”. This, as Copernicus
pointed out, is a significant improvement over Ptolemy’s theory.

Copernicus’ planetary theory

Unlike solar and lunar theories, planetary theory in the sixteenth century had
changed little since the time of Ptolemy. The motion of the Sun and Moon was
of practical importance for the construction of calendars and the determination
of religious festivals, and these theories were fairly easy to test through eclipse
observations. On the other hand, the only use for planetary theory was in the
casting of horoscopes, and here great accuracy was not particularly relevant. It
was also a very difficult matter to carry out the observations required to verify
such a theory. The only significant contribution since AD 200 was Ibn al-Shatir’s
geometrical construction, which removed the equant from Ptolemy’s theory.
What Copernicus realized — indeed, it was the raison d’etre of his helio-
centric theory — was that the so-called second anomaly in the motion of all
the planets (i.e. retrograde motion) that Ptolemy modelled using an epicycle
for each planet, could be reduced to a single cause. Thus, with all the planets
(including the Earth) orbiting the Sun, the occurrence of retrograde motion
was simply a consequence of viewing the planet from a moving observatory
(see Figure 5.1). This also explained the fact that retrograde motion happened
always at opposition for the superior planets and at conjunction for Mercury
and Venus, whereas Ptolemy had had to build these features into his model.
Copernicus’ theory has a further advantage, as we shall see, since actually it
determines the distances of all the planets from the Sun in terms of the distance
of the Earth, and so it is no longer necessary to invoke any extra metaphysical
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Fig. 5.5. Copernicus’ theory for the superior planets.

principles (e.g. Ptolemy’s set of touching spheres) to determine just where the
planets are. However, Copernicus could not dispense with epicycles altogether,
because his heliocentric structure did not explain the variation of the planets’
speeds in their orbits — the so-called first anomaly.

In On the Revolutions, the planetary theories are modified versions of those
used in the Commentariolus, based on the theories of Ibn al-Shatir. Copernicus
began with the superior planets and the geometrical scheme he used is illustrated
in Figure 5.5. The planet P rotates once per sidereal period around an epicycle
centred at C. The centre of the epicycle rotates in the same sense and at the
same rate around a deferent circle centred at O. This point is not the Sun, but is
close to it. In fact, Copernicus did not use the actual Sun in the planetary theory,
but rather the mean sun that is labelled S in Figure 5.5 and which corresponds
to the point O in Figure 5.4. The Earth E moves in a circular orbit around S.
The motion is arranged so that /PCO = /COA, §O A being the apsidal line
of the planet’s orbit.

From a geometrical viewpoint, it is unimportant whether the Earth E or the
Sun S is stationary, and Copernicus’ model with the Earth stationary is shown in
Figure 5.6 superimposed on his original scheme (shown by the dashed lines).”
In Figure 5.5, the position of the planet with reference to the Earth is given by the
vector ES 4+ SO + OC + C P, whereas from the perspective of a stationary

* The comparison given here is based on that given in Neugebauer (1968).
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Fig. 5.6. Copernicus’ theory for the superior planets from a geostationary point of
view (solid lines) superimposed on elements of his heliocentric scheme (dashed
lines).

Earth as shown in Figure 5.6, the planet is at EO’ + O'C’' + C'C" + C"P,
the two being identical, since EO’ = SO, O'C’' = OC, C'C” = CP and
C"P = ES. So Copernicus’ geometrical scheme is equivalent entirely to a
geocentric model in which the planet moves on a double epicycle around
an eccentric deferent or, since motion around an eccentric deferent can al-
ways be replaced by an epicycle, to a triple epicycle model like those of
Ibn al-Shatir.

It is illuminating to compare Copernicus’ theory with that of Ptolemy. The
latter’s success was based on his introduction of the equant and Copernicus
wanted to achieve the effect of the equant without actually having one. If we
construct the line C” Q, parallel to C'O’, intersecting the apsidal line at Q,
elementary geometry implies that O’Q is constant with |0'Q| = |C'C"| =
|CP|,and /C”" QA" = /C O A and, hence, increases uniformly with time. Thus
the point Q plays the role of the equant in Copernicus’ theory and if C”, which
is the centre of the planet’s epicycle, moved around O’ in a circle, Copernicus’
model would be identical geometrically to that of Ptolemy. It does not (though
its path is almost circular given that |C’C"| is small relative to |O’C’|) but if
we were to try to match up with Ptolemy’s model on the apsidal line, say, we
would want to choose (remembering that Ptolemy has the centre of his deferent
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Table 5.1. The parameters in the models for the superior planets.

Ptolemy _ _ Copernicus _
IC"P|  |EQ] |[ES|  |SO| |CP| |SO|+|CP]
Mars 6583 2000 6580 1460 500 1960
Jupiter 1917 917 1916 687 229 916
Saturn 1089 1139 1090 854 285 1139

D midway between E and Q):
R =|DC"|=3|EQ|-|0'Q|+ R —|C'C"| = 3|EQ|-2|CP|+ R,

where we have written R for the radius of both Ptolemy’s and Copernicus’
deferent, and:

|[EQ|=|EO'| +10'Q| = [SO| +|CP|.

In order to satisfy both of these equations, we would choose 3|CP| = |SO|
and this is what Copernicus did, exactly in the case of Jupiter and Saturn and
approximately in the case of Mars.”

It is evident from the parameters used by Copernicus and Ptolemy (given
in Table 5.1 in terms of the length |C O], which is fixed at 10000) that, in a
strictly geometrical sense, there is not much to choose between the two schemes.
However, the Copernican scheme, as a scientific theory, has a great advantage
over its Ptolemaic equivalent (though not one that was particularly influential
in the sixteenth century). In the geostationary scheme shown in Figure 5.6, one
must make the ad hoc assumption that E S and C”P are parallel in order to link
the planet’s motion correctly to that of the Sun, and this must be done for all of
the planets. On the other hand, in the heliocentric theory, all these assumptions
are replaced by a single proposition — that the Earth orbits the Sun.

Another powerful way of making the same point is illustrated in Table 5.2.
For each of the three superior planets, the table shows the zodiacal period T,
the synodic period 75, and the angular speeds to which they correspond, w. and
wp, respectively. In each case, if we add w, and w, together, we get a rate of
1 revolution per year. Why? According to Ptolemy, w. + wj is the rate at which
the planet revolves around its epicycle relative to a fixed reference line (the
planet rotates around the centre of its epicycle at the rate w,, but the centre of
the epicycle is itself rotating at the rate w,). Since w, + w, = 1, Ptolemy makes

33 .. . . .. . .
The true orbit is an ellipse with eccentricity e, for example. A simple argument using complex
numbers can be used to show that both Copernicus’ and Ptolemy’s theories give planetary
positions accurate to first order in e (see, for example, Hoyle (1974)).
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Table 5.2. The periods of the superior planets.

Mars Jupiter Saturn

T. (yrs) 1.88 11.86 29.46

T, (yrs) 2.14 1.09 1.03

we (rev/yr) 0.53 0.08 0.03

wp (rev/yr) 0.47 0.92 0.97
W + w, (rev/yr) 1 1 1

the line connecting the planet to the centre of its epicycle (C P in Figure 3.13,
p. 77) remain parallel to the Earth—Sun line E S which by definition revolves at
arate of 1 revolution per year. However, had w. + ), been different from unity,
this would have caused no problem for Ptolemy — he could simply have made
C P rotate relative to ES§ at the appropriate rate. Hence, for Ptolemy, the fact
that w. + wp, is the same for all the superior planets is simply a coincidence —
part of God’s grand design. Not for Copernicus, though. In his theory, each
superior planet rotates around the Sun at the rate w. and the Earth rotates
around the Sun once each year. The angular speed associated with the synodic
period of each planet (i.e. the rate at which it orbits the Earth) is then necessarily
1 — w.

For the inferior planets, the simplification in terms of the number of ad hoc
assumptions provided by the Copernican theory is more obvious, since it is the
zodiacal period of those planets that is 1 year, and this is immediately implied
by placing the Earth in orbit around the Sun between Venus and Mars.” In the
heliocentric system, the orbital (sidereal) periods T, of Venus and Mercury must
be calculated from their observed synodic periods 7. The synodic period of
Venus is the time between successive inferior conjunctions, and so if the Sun,
Venus and the Earth lie in a straight line at t = 0, they next do so (in the same
order) at t = T,. If we measure time in years, the Earth makes 7}, orbits of the
Sun in this time and so Venus must make 1 + 7}, revolutions. It follows that the
rate at which Venus orbits the Sun is 1/ 7, + 1 revolutions per year, and thus,

1 . 1

. T,
For Venus, this gives a sidereal period of about 224.7 days, whereas for Mercury
we get just under 88 days.

34 . . . . . .
Further discussion of the relative merits of Copernicus’ and Ptolemy’s theories, based on
knowledge available in the sixteenth century, is given in Martin (1984).
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Fig. 5.7. Copernicus’ theory for Venus.

Copernicus’ model for the motion of Venus is shown in Figure 5.7 and
is, in fact, very similar in structure to that for a superior planet. The planet
P again moves around a circle centred at C once every sidereal period, the
point C rotating around a circle centred at O at twice the rate that the Earth £
orbits the sun S. However, in this case the roles of the two circles are reversed,
with the circle carrying the planet being the larger. Again, the Sun is displaced
slightly from O. The point A in Figure 5.7 is the position of the Earth when it
is at the greatest distance from the centre of the orbit of Venus. It is possible
to perform a reduction to a geostationary model exactly as was done above
for the superior planets, with the same conclusions. The circle centred at C
and carrying the planet plays the role of Ptolemy’s epicycle, and Copernicus
obtained |C P| = 7193 (with |ES| = 10000) where Ptolemy’s model would
imply a value of 7194. Ptolemy’s value for the double eccentricity |E Q| was
417, but Copernicus reduced this: ‘Formerly it was all of 416 but now it is 350
as many observations show us.””

Copernicus’ theory for the motion of Mercury (Figure 5.8) follows closely
the arrangement for Venus with two key changes. The first difference is that
whena = /ESA = 0in the model for Mercury, the point O lies between § and

35 COPERNICUS On the Revolutions, V, 22. Had Copernicus distributed 416 in the same way as
he distributed the eccentricity in the models for the superior planets he would have been led to
|OC| = 104 and |§O| = 312, but rather than reduce both these values in proportion so that
their sum is 350, he simply reduced |S O] to 246.
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Fig. 5.8. Copernicus’ theory for Mercury.

C, whereas in the case of Venus, C lies between S and O. This change reflects
the fact that, in Ptolemy’s model for Mercury, the equant Q lies between E and
O rather than O lying between E and Q, as is the case for Venus. Second, in
Copernicus’ theory, the planet does not lie on the circle centred at C but rather
oscillates backward and forward along the radius C P, P rotating around C.
This is Copernicus’ method for reproducing Ptolemy’s rotating deferent, and
he pointed out that such a rectilinear motion can be produced from the sum
of two uniform circular motions as he had done in his theory of precession,
i.e. using the Tas1 couple. The dimensions of Copernicus’ model are (with
|ES| = 10000) [SO| = 736,|0C| = 212, |C P| = 3763, and the radius of the
circle used to produce the oscillation of P about P is 190. When we consider
the technical detail involved here, it is hard to believe that Copernicus considered
this as a model of physical reality.

The problems Copernicus faced in determining the appropriate numerical
parameters for his models were immense. Thousands of tedious calculations
were required — multiplications, root extractions, and interpolations from tables.
It is not surprising that no one since Ptolemy had spent years of his or her
life attempting to compute the elements of planetary orbits. For the superior
planets, Copernicus could obtain fairly easily the observational data required
to determine the necessary parameters, but for Mercury and Venus the situation
was less satisfactory. In fact, for the inferior planets he relied pretty much on
Ptolemy’s observations.
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The sixth and final book of On the Revolutions treats planetary latitudes. Un-
fortunately, as Kepler later noted, Copernicus’ latitude theories were designed
to reproduce the results of Ptolemy (which were not particularly accurate) rather
than to represent nature. Part of the problem was that Copernicus’ planetary the-
ories were all linked to the mean Sun — the centre of the Earth’s orbit — and not to
the Sun itself. As a result, the variations in the inclinations of the orbital planes
of the planets (which he termed obliquations) are linked in Copernicus’ com-
plicated theory to the longitudinal motion of the Earth. In Copernicus’ defence
it should be noted that he had little alternative but to base his latitude theory
on Ptolemy’s inaccurate data, since the relevant observations can be made only
extremely rarely at certain configurations of each planet. Copernicus also was
unfortunate in that he was not aware of the simplified (and improved) latitude
theories that Ptolemy had introduced in the Planetary Hypotheses.

To find the solar distance, Copernicus used exactly the same method as had
Ptolemy, and obtained virtually identical results. Prior to Copernicus, the main
reason for computing the distance between the Earth and the Sun was to establish
that the solar parallax was smaller than the accepted limits of observational error.
In Copernicus’ heliocentric universe, however, this distance is a fundamental
unit in terms of which the mean distances of the planets from the Sun can
be determined. In fact, in terms of predictive power, this is perhaps the most
significant advantage of the Copernican system over its Ptolemaic predecessor.
It is slightly surprising then that Copernicus did not choose to emphasize its
significance, and he never used it to produce values for the distances of the
other heavenly bodies.

The calculations can be done of course, based on the parameters derived
by Copernicus for the planetary orbits, and the results of such a computation
are shown in Table 5.3.” On the left are the values given by al-Battant for the
mean distances of the planets from the Earth in terms of the mean Earth—Sun
distance, which are essentially the same as those given in Ptolemy’s Planetary
Hypotheses though the latter were unknown in the sixteenth century. In the
second column we have the distances in Copernicus’ theory, though these are
now distances to the Sun rather than the Earth. What is immediately striking
is that Copernicus’ solar system is actually smaller than Ptolemy’s universe.
Of course, the distance to the stars is vastly different in the two systems. For
al-Battani the stars were just outside the sphere of Saturn at a distance of about

* The figures for al-Battani and Copernicus are (rounded) decimal equivalents of values in
Swerdlow and Neugebauer ((1984)). The orbits of Jupiter and Saturn are subject to large
perturbations that result in significant variations in their orbital parameters over time. This
accounts for the low accuracy of the modern values for these two planets.
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Table 5.3. Mean distances to the planets in terms of the
Earth—Sun distance.

Al-Battant Copernicus Modern
(distance to Earth) (distance to Sun)

Mercury 0.1039 0.3764 0.3871
Venus 0.5578 0.7194 0.7233
Sun/Earth 1.0000 1.0000 1.0000
Mars 4.1372 1.5197 1.5237
Jupiter 9.45 5.22 5.20
Saturn 14.0 9.2 9.5-9.6

19 000 Earth radii, whereas, as mentioned previously, the lack of annual stellar
parallax implied a distance of well over 1 million Earth radii to the stars in
the Copernican universe. This enormous implied gap between Saturn and the
stars containing no heavenly bodies at all with, as Tycho Brahe would later
observe, no conceivable purpose, was yet another reason to be sceptical about
the heliocentric theory. The modern values are shown in the third column,
and it is clear that Copernicus’ theory gave very good results for the relative
dimensions of the planetary orbits.

The reception of Copernicus’ theory

Since the work of Isaac Newton in the latter part of the seventeenth century,
the theoretical calculation of the positions of heavenly bodies and the physical
nature of the Universe have been linked inextricably through the theory of
gravitation. But in the sixteenth century, most astronomers thought of these
as entirely separate subjects, and the two parts of On the Revolutions — the
first dealing with the physical reality of the Earth’s motion and the second
with geometrical methods for astronomical calculations — were received very
differently.37

It is assumed often that there was an immediate conflict between Coper-
nicanism and the Catholic Church. In fact, the educated Catholic clergy was
not particularly interested in Copernicus’ thesis, and it was accepted without
comment by Pope Paul III, to whom On the Revolutions was dedicated. Since
Osiander’s unsigned preface asserted that the heliocentric system was just a
convenient mathematical hypothesis, there was little cause for conflict.

7 Detailed discussions of how the heliocentric idea fared around the world can be found in
Dobrzycki (1973b).
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Copernicus’ great work was not entirely uncontroversial during the half
century following its publication, though. Throughout the late Middle Ages,
Christianity had coexisted fairly comfortably with scientific endeavour but,
whereas the Catholic Church claimed the right to interpret the scriptures, the
Reformation that created Protestantism was based on a literal reading of the
Bible. The differences in modes of interpretation grew during the sixteenth cen-
tury, and as a result the Lutheran Church did object to Copernicus’ heliocentric
universe. Martin Luther himself described Copernicus as the ‘fool who wanted
to turn the art of astronomy on its head’.” The real theological controversy,
however, in which both Catholics and Protestants took part, did not start until
the seventeenth century in the wake of Galileo and Kepler.

Among astronomers, Copernicus’ work, which had been eagerly anticipated,
was recognized as the first astronomical treatise since Ptolemy to rival the
Almagest in depth and scope. But the motion of the Earth (which was the cen-
tral thesis of On the Revolutions) was, with one or two notable exceptions,
dismissed. A typical reaction was that of the English astronomer Thomas Blun-
deville, who in 1594 wrote:

Copernicus . . . affirmeth that the earth turneth about and that the sun standeth still
in the midst of the heavens, by help of which false supposition he hath made truer
demonstrations of the motions and revolutions of the celestial spheres, than ever
were made before.*

The most important German university in the sixteenth century was in
Wittenberg, and there a group of astronomers under the guidance of the Protes-
tant reformer Philipp Melanchthon came to a consensus as to how On the Revo-
lutions should be interpreted. In essence, this boiled down to treating Coperni-
cus’ work as a tool for computing the positions of celestial bodies and believing
that mathematical astronomy had nothing to say about physical reality. One of
these astronomers was Erasmus Reinhold, who was Professor of Astronomy
at Wittenberg from 1536 until his death in 1553, and he was impressed deeply
by Copernicus’ removal of the equant from Ptolemy’s theory. In his copy of
On the Revolutions, he emphasized the importance he attached to Copernicus’
achievement when he wrote: ‘The axiom of astronomy: celestial motion is cir-
cular and uniform or made up of circular and uniform parts.’40 Reinhold was
an excellent computational astronomer, and went on to produce a new set of
tables based on Copernicus’ theory. These were the widely respected Prussian
Tables (1551), named after Reinhold’s patron, the Duke of Prussia, in which
the author wrote:

jz Quoted from Blair (1990). ¥ Quoted from Kuhn (1957), p. 186.
Quoted from Gingerich (1973a).
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All posterity will gratefully celebrate the name Copernicus. The science of the
celestial motions was almost in ruins; the studies and works of this author have
restored it.”

Through the work of Reinhold, and also that of his successor as Professor of
Astronomy at Wittenberg, Melanchthon’s son-in-law Caspar Peucer, Coperni-
cus became known widely in astronomical circles as a reformer of Ptolemaic
astronomy; he was the man who had removed the equant.

In the years immediately following the publication of On the Revolutions,
one astronomer viewed Copernicus’ theory in an altogether different light, and
that was Rheticus, who had also studied at Wittenberg before travelling to From-
bork in 1539. Rheticus was captivated by the aesthetic nature of the heliocentric
scheme, perhaps even more so than Copernicus himself was, and argued strongly
for the acceptance of both the geometrical and the physical parts of the the-
ory. Despite Rheticus’ support, most sixteenth-century astronomers restricted
themselves to the problem of computing accurate ephemerides. Rheticus was
one of the few astronomers who ever believed in the Copernican universe in
both the physical and technical sense.

Another astronomer who played a significant role in subsequent develop-
ments was Michael Mistlin, Professor of Mathematics at the University of
Tiibingen from 1584 until his death in 1631. Mistlin is best known as the man
who taught Kepler the Copernican theory, though this was by no means his only
contribution. Although Mistlin eventually became convinced that Copernicus
was right, and taught the Copernican hypothesis at Tiibingen, it is interesting
to note that in his successful astronomy textbook Epitome of Astronomy he
concentrated almost entirely on Ptolemaic astronomy.

Many of the procedures that were required when using Copernicus’ planetary
theories were extremely tedious, but surprisingly little effort was expended on
devising more efficient mathematical techniques suitable for the purpose. Much
of the problem stemmed from the fact that many astronomers in the sixteenth
century were simply not good enough mathematicians to improve on what
by and large were the methods of Ptolemy. There was one notable exception
though, and that was Francois Viete who was one of the leading mathematicians
of his day and who made the first significant steps toward the development of
modern algebraic techniques. Viéte was scathing about Copernicus:

Certainly an unfortunate computer, Copernicus was a still more unfortunate

geometer, and so failed to do what Ptolemy failed to do, but made even more
. 42

mistakes.

o Quoted from Westman (1975).
Quoted from Swerdlow (1975), which contains details of Viete’s planetary theories.
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Fig. 5.9. The use of an ellipse in Viete’s theory for a superior planet.

Viete’s approach to astronomy was that of a mathematician. He was not
concerned with representing the heavenly motions any more accurately than
Copernicus or Ptolemy had, but in devising equivalent though more refined
geometrical models. His theories were geocentric, but he was fully aware that
geocentric and heliocentric systems could be equivalent geometrically and the
question of which one represented reality was unimportant. Viete’s influence
on the development of astronomy was negligible, not least because his work
on planetary theory was never completed, and by the time his manuscripts
were discovered, Kepler had left Copernicus and Ptolemy far behind. However,
given the importance of the ellipse in astronomy from Kepler onwards, it is
interesting to note that Viete actually introduced the shape into his planetary
theories — though not for the same purpose!

Copernicus’ theory for the superior planets involved an epicycle on an eccen-
tric circle and this is equivalent geometrically to a double epicycle. Figure 5.9
shows this double epicycle mechanism (compare Ibn al-Shatir’s scheme in
Figure 4.8, p. 106) in which the first epicycle, radius r;, rotates so that as D
revolves around E, B D remains parallel to the apsidal line E A, and the second
epicycle rotates in the opposite sense so that /DBC = 2/DFE A. This double
epicycle can be replaced by an ellipse and the simplest way to show this is to
use coordinates centred at D as shown in the figure, but it should, of course, be
remembered that Viete did not have this method at his disposal, since the de-
velopment of analytic geometry by Descartes and Fermat still lay in the future.
The point C (which is actually the centre of a third epicycle in Ibn al-Shatir’s
theory) is at (x, y) where x = (r; + rp)sine and y = (r; — rp) cos«, from
which it follows that

%2 y2
(r1 +r)? * (ri —r2)?
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Thus, Viete replaced the two epicycles with a single ellipse having semi-major
axis r; + r, and semi-minor axis r| — r2.43

One thing that did lead to a minor improvement in Copernicus’ system
was the realization that things would be simpler conceptually if the axis of
the Earth were considered to be fixed with respect to the stars (apart from
precession of course). Toward the end of the sixteenth century, a number of
astronomers recognized that Copernicus’ insistence on three motions for the
Earth was unnecessarily complicated. For example, the German astronomer
Christoph Rothmann, who was a firm adherent of the Copernican theory,
wrote:

I know that in this point Copernicus is very obscure and difficult to
understand. . . . This can be explained much more easily, and the triple motion of
the earth is not necessary; the daily and the yearly motions suffice.”

Of the early followers of Copernicus in England — somewhat of a scien-
tific backwater during the sixteenth century — most notable are John Dee and
his pupil Thomas Digges.45 Dee advocated openly the Copernican theory as
the best method for computing future positions of celestial bodies, though
whether he subscribed to the physical basis of the theory is unclear. Either
way, Dee’s acceptance of heliocentrism was significant, as he was a man of
considerable influence in Elizabethan England. In 1576, Digges translated sub-
stantial parts of the first book of On the Revolutions into English and built
into his vision of the Universe a radical suggestion. He replaced the idea of a
sphere of fixed stars outside the sphere of Saturn with the concept of an infinite
world with stars scattered through it. This idea was incorporated by Giordano
Bruno into his pantheistic cosmology. Bruno advocated many unorthodox ideas,
e.g. that the stars were all like our Sun, perhaps surrounded by planets and
with other people inhabiting them.” He was burned as a heretic in Rome
in 1600.

In the half century following Copernicus’ death, most astronomers realized
that On the Revolutions was of major significance, but the desire was there to

“ appears that Copernicus was aware of this method of generating an ellipse (Swerdlow and
Neugebauer (1984), p. 135), but of course for him an ellipse was not an acceptable curve to

“ incorporate into a planetary theory.

' From a letter to Tycho Brahe in 1590. Quoted from Pannekoek (1961).
A discussion of early British Copernicanism can be found in Russell (1973).
More detail on Bruno’s cosmology can be found in Singer (1950) (which contains a translation
of his De [’infinito, universo e mondi), and McMullin (1987), while the relationships between
the ideas of Dee, Digges, and Bruno are discussed in Ronan (1967), pp. 27-39. A number of
other radical thinkers saw the Copernican theory as an opportunity to break away from the
scholastic tradition (see Boas Hall (1994), Chapter IV; also Johnson (1937)).
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find a way of utilizing the attractive parts of Copernicus’ theory without having
to lose hold of the fundamental tenet of a stationary Earth. For many, this was
simply too high a price to pay, even for the undoubted benefits of the Copernican
system. Toward the end of the sixteenth century, an astronomer emerged who
realized that it was possible to construct a world system that retained some
of the elegance of Copernicus’ heliocentric idea but which did not require a
moving Earth. This was Tycho Brahe.
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Tycho Brahe, Kepler, and the ellipse

Tycho Brahe

Tycho Brahe was born into a small privileged class of people who had controlled
Denmark for over 200 years.1 He was influenced by the Lutheran doctrine,
prevalent in Denmark in the sixteenth century, that emphasized the importance
of education, including the four mathematical sciences of the quadrivium —
arithmetic, geometry, astronomy, and music — and at the age of 13 he went to
the University of Copenhagen where he began to acquire his knowledge and
love of astlronomy.2 He also studied astrology and cast horoscopes, believing
that a better knowledge of the motions of the stars and planets would allow
man to have greater power over his fate. The following passage from an oration
delivered in 1574 gives us a clear idea of Tycho’s views on the validity of
astrology:

To deny the forces and influence of the stars is to undervalue firstly the divine
wisdom and providence and moreover to contradict evident experience. For what
could be thought more unjust and foolish about God than that He should have made
this large and admirable scenery of the skies and so many brilliant stars to no use or
purpose — whereas no man makes even his least work without a certain aim. That
we may measure our years and months and days by the sky as by a perpetual and
indefatigable clock does not sufficiently explain the use and purpose of the celestial
machine; for what it does for measuring the time depends solely on the course of
the big luminaries, and on the daily rotation. What purpose, then, do these other
five planets revolving in different orbits serve? . . . Has God made such a wonderful
work of art, such an instrument, for no end or use? . . . If, therefore, the celestial

; An excellent biography is Thoren (1990).
His education at Copenhagen is described in Christianson (1967). There was a solar eclipse on
21 August 1560 that was visible as a partial eclipse in Copenhagen and it seems likely that this
event was instrumental in arousing Tycho’s interest in observational astronomy.
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bodies are placed by God in such a way as they stand in their signs, they must of
necessity have a meaning, especially for mankind, on behalf of whom they have
chiefly been created. . .

Astrological predictions required accurate knowledge of planetary positions
but by the time he was 20, Tycho had already satisfied himself that both the
Alfonsine Tables and the Prussian Tables left a great deal to be desired. In 1563,
he observed the conjunction between Jupiter and Saturn, an event that takes
place every 20 years or so and which is especially significant for astrologers,
and he noted the inaccuracies in the existing tables; those based on Copernicus
were out by a few days and those based on Ptolemy by almost a month! Another
important part of Tycho’s development as an astronomer was his interest in the
design and construction of observing instruments. Already in 1570 he had
designed and built a giant quadrant measuring a massive 5.5 m in radius.

On 11 November 1572, Tycho noticed an unfamiliar star-like object in the
sky near the three stars that comprise the right-hand half of the familiar W
of Cassiopeia. It was brighter than the stars Sirius or Vega or, indeed, Venus,
and lay outside the zodiac, so could not be a planet. It did not conform to
other peoples’ descriptions of comets (though Tycho had never seen a comet)
and repeated observation over a number of nights showed that it did not move
relative to the stars like a comet. When the new star appeared it was so bright
that it was visible at noon, but by December had dimmed to the brightness
of Jupiter, and by February/March 1573 was a bright star. Tycho followed the
decay of the star until its final disappearance sometime around March 1574. We
now know that what Tycho and other astronomers witnessed was a huge stellar
explosion — a supernova.

This event had profound implications for the Aristotelian view of the Cosmos
and was a turning point in Tycho’s life. One of the reasons for the success of
Aristotle’s separation of the changeable sublunary world and the immutable
heavenly spheres, was that essentially it was correct in that no changes were
observed in the region beyond the Moon. The only serious problem was that
posed by comets but, by insisting that comets were closer to the Earth than the
Moon, Aristotle had ensured that few astronomers, at least until the fifteenth
century, studied them carefully. Tycho was not a slavish follower of Aristotelian
doctrine, but it must have had some influence on him. However, he was suffi-
ciently independent-minded to measure the new star for diurnal parallax, and

} Quoted from Pannekoek (1961), p. 204. The oration was an inaugural address preceding a
series of lectures that Tycho gave on advanced astronomy at the University of Copenhagen.
This oration covered a wide variety of subjects, including Tycho’s approach to biblical
interpretation, a topic discussed by Howell (1998).
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when he found none, to trust his observations. Since the diurnal parallax of
the Moon, was easily detectable, he asserted categorically that the new star
was further away than the Moon. Tycho regarded the new star as a special cre-
ation of God, and most people (probably including Tycho) were less concerned
with arguments about its position than with its meaning. Michael Mistlin also
observed the new star, and came to the same conclusions as Tycho about its
position above the Moon.

As Kepler later remarked, the new star of 1572 heralded the birth of a new
astronomer, for after this Tycho concentrated his efforts on astronomy, whereas
previously his intellectual efforts had been directed more toward alchemy (he
never gave up his researches into alchemy, though). In 1573, he published a
short tract, On a New Star." This publication, while not to everyone’s liking,
did establish Tycho as an authority on astronomical matters, and in 1574 he
gave some lectures on advanced astronomy at the University of Copenhagen.
Interestingly, Tycho based the technical part of his lectures on Copernican
theory, though it is clear that he rejected any physical basis for the theory.

In our time, however, Nicolaus Copernicus, who has justly been called a second
Ptolemy, from his own observations found out that something was missing in
Ptolemy. He judged that the hypotheses established by Ptolemy admitted something
unsuitable and offending against mathematical axioms: he did not either find the
Alphonsine computation meeting the heavenly motions. He therefore arranged, by
the admirable skill of his genius, his own hypotheses in another manner and thus
restored the science of the celestial motions in such a way that nobody before him
has considered more accurately the course of the heavenly bodies. For although he
devises certain features opposed to physical principles, e.g. that the sun rests at the
centre of the universe, that the earth, the elements associated with it, and the moon
move about the sun in a triple motion, and that the eighth sphere remains unmoved,
he does not for all that admit anything absurd as far as mathematical axioms are
concerned. But if we examine the matter thoroughly it appears right to blame the
current Ptolemaic hypotheses in this regard. For they dispose the motions of the
heavenly bodies in their epicycles and eccentrics as irregular with respect to the
centres of these very circles. This is absurd, and by means of an irregularity they
save unsuitably the regular motion of the heavenly bodies.”

Clearly, Tycho admired the mathematical aspects of the Copernican system and
rejected the Ptolemaic equant, and it was to Copernicus’ theory that he would
turn when computing the positions of heavenly bodies. As a young man, Tycho
may well have believed that in order to produce tables that were in agreement

* De stella nova . .. The full Latin title translates as On a New Star, Not Previously Seen within
the Memory of Any Age since the Beginning of the World. An English translation can be found
in Shapley and Howarth (1929).

TycHo BRAHE An Oration on Mathematical Disciplines. Quoted from Moesgaard (1973).
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with observation, all that was required was to re-evaluate the parameters in the
Copernican models. The accuracy of his subsequent observations, however, led
to the realization that this alone was not sufficient.

In 1576, in order to persuade Tycho not to emigrate from Denmark, King
Frederick II granted him the fiefdom of the island of Hven for the rest of his life.
Tycho liked the isolation and decided to build a great house and observatory
there that he named Uraniborg, after Urania, the Greek goddess of the heavens.
It took over 4 years to build and on the walls he hung portraits of Timocharis,
Hipparchus, Ptolemy, al-Bitriiji, Alfonso X, and Copernicus (as well as himself).
Also, he had a workshop built in which a great number of ever more accurate
observing instruments were plroduced.6

Tycho Brahe’s first major contribution came in 1577 following his first sight-
ing of a comet. He saw the comet first on 13 November and began immediately
making careful observations, something he continued to do until the comet
faded from view in January 1578. In November, its tail stretched 22° across
the sky and the comet matched Venus for brilliance. By the end of December,
Tycho concluded that the comet showed essentially no diurnal parallax and was
convinced that it was further away than the Moon, at least 230 Earth radii away
(about 4 times the mean Earth—-Moon distance according to Copernicus). He
noted that the tail of the comet always pointed away from the Sun’ and came
to the conclusion that it was, in fact, orbiting the Sun. Once again, Mistlin
was in agreement.8 Tycho’s initial findings were written up in a report for the
Danish Crown’ and here we find that Tycho had already taken a fundamental
step toward his own geoheliocentric world system. This was the assumption
that Venus and Mercury orbit the Sun rather than the Earth.” According to this
scheme, Tycho believed that the closest approach of Venus to the Earth came
at a distance of 296 Earth radii, and so suggested that the comet had an orbit
around the Sun outside that of Venus."

His first public account of the comet did not appear until much later. In
1588, he published personally his Concerning the More Recent Phenomena of

® Christianson (2000) describes in detail the staff, structure and culture of Tycho’s island and
how Tycho Brahe influenced the lives of all those who worked there.

He wasn’t the first to make this discovery about comets. Fracastoro noted precisely the same
thing in his Homocentrica of 1538.

) Mistlin’s analysis of the comet is described in Westman (1973).

A discussion of this report, which was only discovered in the twentieth century, together with
an English translation, is given in Christianson (1979).

Described by Copernicus as being due to Martianus Capella (see p. 130).

Interestingly, he also contemplated the idea of an oval rather than a circular orbit, Boas Hall
(1994), p. 118.
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the Ethereal World in which he not only propounded his own theory of the
comet at great length, but also reviewed and criticized corresponding analyses
by nineteen other authors.” Tycho, along with most other people, believed that
comets usually heralded bad news, and this one was no exception. In his original
report he wrote:

Likewise, on the evening when the comet first appeared after sunset, it was in the
8th house, which astrology ascribes to death. All this indicates that the comet
augurs an exceptionally great mortality among mankind . . . the like of which has
not occurred in many years. This will come about not only through gruesome
pestilence and other deadly diseases . .. but it will also ensue from great wars and
bloodsheddings, for the tail of the comet had a fiery, dark and martial

appearance ...

The accuracy and systematic nature of Tycho’s observations were unprece-
dented. Earlier astronomers had been able to achieve accuracies of about 10-15,
whereas by 1581 Tycho’s measurements were averaging errors of about 4’ of
arc. His goal was to reduce this to 1’ — a full order of magnitude improvement
in accuracy — and he began to achieve this around 1585." One of Tycho’s first
major projects, which he began as early as 1576, was the accurate determi-
nation of Hven’s latitude and he did this by two different methods. One was
based on averaging the maximum and minimum altitudes of circumpolar stars,
and the other on observations of the noon Sun. He found that the results from
the solar method consistently were lower than those based on the stars, and by
early 1584 he identified the reason: atmospheric refraction. Tycho’s recognition
of the serious effects of this phenomenon on astronomical observations was a
major step forward.

However, Tycho’s quantitative calculations of the effect of refraction were
erroneous due to his corrections for solar parallax, which he took to have the
excessive value found in Ptolemy. In order to get theory to match observation,
Tycho’s corrections for refraction had to account for the inaccurate solar parallax
as well as for the phenomenon itself. Since solar parallax was not relevant to
the fixed stars, the light from which also underwent refraction, Tycho was led

" The Latin title was De mundi aetherei recentioribus phaenomenis. A thorough discussion of all
that was written about the 1577 comet is given in Hellman (1944). Gingerich and Westman
(1988) have found that over half of the astronomical works published in the 1570s sought the
meaning of the comet of 1577 or the new star of 1572. For a discussion of the role of comets in
astronomical thought prior to Tycho, see Barker and Goldstein (1988) and references cited

" therein.

Quoted from Christianson (1979).
A study of the accuracy of Tycho’s instruments can be found in Wesley (1978).
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to believe that the effect of refraction on sunlight was different quantitatively
from its effect on starlight.15

During the 1580s and early 1590s, Tycho derived improved parameters for
the solar theory (still essentially Hipparchus’), and worked on the production
of an extremely accurate catalogue of 777 stars. This was the first star cata-
logue available in Europe that was independent of Ptolemy’s, and represented
a decrease of an order of magnitude in the errors compared to the catalogue
Copernicus had included in On the Revolutions. Because Tycho realized just
how much effort went into obtaining accurate observations, he was extremely
sceptical of ancient observations and distinctly unimpressed with the many
complicated theories of precession that had been proposed based on them. His
data suggested that the rate of precession was constant (he fixed it at 51” per
year) and that some of the old observations were erroneous, and discarded the
popularly held belief that theories should be able to reproduce both ancient and
modern observations.

The decrease in obliquity (which in the trepidation theory was produced by
the same mechanism that generated precession) was real, however. Copernicus
had modelled the variation in obliquity as due to a motion of the Earth, but apart
from this it had been assumed previously to be due to a motion of the sphere of
fixed stars. If this were the case, the ecliptic latitudes of the stars should have
been constant over time, but their declinations (distances from the celestial
equator) should have varied. On the other hand, if the variation in obliquity was
due to a shift in the orbit of the Sun it would be the latitudes that had altered
rather than the declinations. Tycho’s observations enabled him to determine
which of the alternatives was the true cause. He found that stellar latitudes had,
indeed, changed, with those for stars near the summer solstice increasing and
those near the winter solstice decreasing. Hence, the angle between the path of
the Sun and the celestial equator gradually decreases, but the stars do not take
part in this motion. "’

Tycho’s work required extensive and highly accurate computations and he
was helped by the 4-month visit to Hven of the mathematician and astronomer

A theory of refraction that was the same for the Sun and the stars was developed by Kepler in
1604, but astronomers had to wait until Descartes published what we now refer to as Snell’s
law in 1637 for the correct refraction law. The Dutchman Willebrord Snell, who visited Tycho
during the winter of 1599-1600, discovered the law in 1621 but did not publish it. There is
evidence that the English mathematician Thomas Harriot discovered the correct refraction law
sometime before 1601. Harriot produced refraction tables for a number of substances and he
sent them to Kepler in 1606 (Lohne (1975)).

Tycho’s views were not accepted universally. Indeed, in the eighteenth century, long after the
invention of the telescope, distinguished astronomers were still putting forward evidence to
support the idea of a constant obliquity (see Wilson (1980), p. 65).
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Paul Wittich in 1580. Wittich brought with him the knowledge of the method
of prosthaphaeresis, originally devised by Ibn Yiinus (see p. 96), by which
multiplications could be reduced to a combination of addition, halving and the
use of trigonometric tables. Tycho recognized immediately the benefit of the
method and, together with Wittich, began to compile a manual of trigonometry
to aid Tycho’s assistants. This was never completed.17

Tycho’s world system

Due largely to having provided the data from which Kepler discovered his laws
of planetary motion, Tycho is often remembered as simply an observer (albeit
a brilliant one) rather than as a theorist. In fact, he was one of the great cosmol-
ogists between Copernicus and Newton. He developed a world system that was
designed to avoid what he viewed as the mathematical absurdity of Ptolemy’s
equant and the physical absurdity of Copernicus’ moving Earth. Tycho was con-
vinced that the Earth was at the centre of the Universe and ‘not whirled about
with an annual motion as Copernicus wished’.”" The baseline for his cosmology
was the Almagest. Although he admired Copernicus’ achievement in removing
the equant and was quite happy to use Copernicus’ geometrical methods for
computing planetary positions, he could not countenance the implications of
the heliocentric system. Thus, even though the structure he ended up with is
equivalent geometrically to that of Copernicus, almost certainly he derived it
without ever departing from the hypothesis of a stationary Earth.

By 1577, Tycho had contemplated already the fact that Venus and Mercury
might orbit the Sun rather than the Earth, but at that time he still thought that the
superior planets orbited the Earth. When Wittich visited Hven in 1580, he carried
with him a series of drawings containing various geometrical transformations of
Copernicus’ planetary theories.” One of these was a schematic diagram (very
similar to that in Figure 6.1 though without the dashed lines) showing the Sun
S orbiting the Earth E, with Mercury and Venus in orbit round the Sun. The
Moon orbits the Earth, as do the three superior planets, which are all carried on
Ptolemaic epicycles with the radius connecting each planet to the centre of its
epicycle parallel to the Earth—Sun line. What was significant about Wittich’s

i; More details of this episode can be found in Thoren (1988).

o Quoted from Gingerich (1992), p. 92.
The drawings were discovered in the Vatican library by O. Gingerich and some were published
in Gingerich (1973a). Gingerich thought originally that they were made by Tycho but
subsequent investigations revealed that they were by Wittich (see Gingerich and Westman
(1981, 1988)).
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Fig. 6.1. Paul Wittich’s diagram.

drawing was that all the epicycles were the same size as each other and also as
the Sun’s orbit around the Earth.

Of course, this is perfectly possible in a Ptolemaic universe, one is free to
choose the radii of the epicycles as one pleases, but only at the expense of
changing the sizes of the planetary orbits from the values established using the
space filling spheres principle. However, in a Copernican system, with which
Wittich was thoroughly familiar, the role of all these epicycles is replaced by
a single circle — the orbit of the Earth round the Sun — and so perhaps this
is why he drew the diagram as he did. In any case, it is a small step from
Wittich’s illustration to Tycho’s geoheliocentric world system. One simply has
to transform the epicyclic motions of the superior planets into eccentric circles
centred on the Sun by constructing the parallelograms shown with dashed lines
in Figure 6.1.

Tycho did not make this conceptual leap immediately — it took him a couple
of years. For one thing, he was busy with other aspects of his observational
programme. Another comet appeared in 1580 that diverted his attention; again,
he concluded that it was far above the Moon. Then in the winter of 1582/83 he
began a series of observations of Mars. Tycho realized that no one had as yet
devised an observational technique for deciding between the Copernican and
Ptolemaic universes, but perhaps Mars held the key. In Ptolemy’s geocentric
scheme, Mars was always further away from the Earth than the Sun, but in
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Fig. 6.2. The world system of Tycho Brahe.

Copernicus’ heliocentric theory (and in the geoheliocentric theory suggested
by Wittich’s diagram) it was sometimes nearer than the Sun. Since, as far as
Tycho was concerned, the Sun had a parallax of 3’, Mars would have a parallax
in excess of this value when it was closer to the Earth than the Sun. If he could
find such a parallax, he would have provided the first ‘proof” of the falsity of
Ptolemy’s geocentric universe. Now, the Sun is about 20 times further away
than Tycho thought, and the largest possible parallax angle for Mars is roughly
25”, which was beyond the limits of even Tycho’s naked-eye astronomy. As a
result, Tycho failed to find the phenomenon for which he was looking, but he
wanted so desperately to find this parallax that eventually he deluded himself
that he had done so.

By 1584, he had devised his geoheliocentric scheme (Figure 6.2) in which
the Earth was immobile at the centre of the Universe, orbited by the Moon and
the Sun, about which orbited the other five planets. The orbits of Venus and
Mercury around the Sun were smaller than that of the Sun around the Earth,
whereas the orbits of Mars, Jupiter and Saturn were larger. This ensured that
Venus and Mercury always remained close to the Sun, while enabling the other
three planets to be found anywhere in the zodiac.

As far as the determination of planetary longitudes is concerned, Tycho’s
geoheliocentric system is equivalent geometrically to both the geocentric uni-
verse of Ptolemy and the heliocentric world of Copernicus. This is illustrated
for the superior planets in Figure 6.3. The solid circles represent the deferent
and epicycle of Ptolemy’s theory, with E the stationary Earth (placed at the
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Fig. 6.3. The geometrical equivalence of Ptolemy’s, Copernicus’ and Tycho’s
system for the superior planets.

centre of the deferent for simplicity), S the Sun, C the centre of the epicycle
and P the planet under consideration. The motion of the planet is linked to the
Sun by virtue of the fact that ES P C is always a parallelogram. In Copernicus’
theory, S is at rest, with the Earth moving around it on the small dashed circle
and the planet moving around the large dashed circle centred on the Sun. In
Tycho’s scheme, the Sun rotates around the Earth on the dotted circle and the
planet again orbits on the large dashed circle. Thus, exactly the same planetary
orbit can be thought of as resulting from three quite different physical origins.
A similar equivalence can be obtained for the inferior planets. Tycho’s system
also retains the conceptual elegance of the Copernican universe, in that the orbit
of the Sun round the Earth explains the second anomaly for all the planets.

However, there was a major problem. When Tycho actually computed all
the technical details required to make his theory reproduce accurately the phe-
nomena — including the sizes of the various orbits — he found that the orbit of
Mars had to intersect that of the Sun, and he confessed that he initially

could not bring myself to allow this ridiculous penetration of the orbs, so that for
. . . 2
some time, this, my own discovery, was suspect to me.”

The problem with intersecting orbits was the Aristotelian belief that the celestial
bodies were carried around on real, solid spheres, and Tycho, along with most

0 Quoted from Thoren (1990), p. 254. There is a sense in which Tycho’s problem is an illusion
(see Margolis (2002), p. 49) but what is important here is that Tycho and his contemporaries
believed that there was a problem.
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others of his generation, subscribed to this view. However, it is not clear why he
did not object to the fact that the spheres of Venus and Mercury also intersect
that of the Sun.

Salvation for Tycho lay in his data on the comet of 1577 and that of his
contemporary Michael Mastlin. Mistlin had, in addition to computing its orbit
around the Sun, tabulated its daily distances from the Earth, and these ranged
from about 155 to 1495 Earth radii. Tycho computed these distances from
his own orbital data, with similar conclusions, and realized that if the results
were correct, the comet would have had to pass through the supposed solid
spheres. He began to doubt their existence and eventually was converted to this
new viewpoint.2I Tycho published finally his geoheliocentric scheme, which he
always regarded as the most significant achievement of his life, in 1588.”

Tycho was sure that the stars were situated just beyond Saturn, which in
his geoheliocentric universe meant they were about 14 000 Earth radii away.
For why would God have created so much wasted space as was implied by
the Copernican theory? Furthermore, if Copernicus was correct, the angular
diameter of the stars (thought then to be up to 2))" would imply that the stars
were of a comparable size to the Earth’s orbit, whereas if they were just beyond
Saturn, the implied sizes were about 4 times the diameter of the Earth, which, to
Tycho, was much more reasonable. In fact, Tycho used this as further evidence
for the superiority of his scheme over Ptolemy’s, because in the universe de-
scribed in the Almagest, the stars were 20 000 Earth radii away, which implied
a proportionate increase in their size.

From a modern perspective, Tycho’s system appears to be a step backwards.
Copernicus had set the Earth in motion around the Sun and Tycho placed it
firmly back in the centre of the Universe. Moreover, Tycho had reduced the
size of the Copernican cosmos so that in his scheme it was only two-thirds of
the size of the Ptolemaic universe. But to many sixteenth-century astronomers,
it represented the best of both worlds, retaining all that was desirable from
the Copernican theory, but without the motion of the Earth for which there
was, after all, absolutely no evidence. The intersection of the spheres of Mars
and the Sun was, however, a problem that troubled many astronomers since,
although Tycho had ceased to believe in solid celestial spheres, this was by
no means the general consensus. Tycho’s world-view excited a great deal of
debate in the seventeenth century and, as religious opposition to Copernicus

fl Details of this conversion are given in Rosen (1985a).

; As an additional chapter in Concerning the More Recent Phenomena of the Ethereal World.

~ In fact, all stars are essentially point-like objects; it is human vision that makes brighter stars
appear larger than dimmer ones.
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grew, his system became more and more influential. Ironically, at the time of
Tycho’s death in 1601, virtually no astronomers were believers in a heliocentric
cosmology, but they all used Copernican techniques. After Kepler however,
virtually all astronomers were to become Copernicans, but they had no need
for his technical astronomy.24

Various disputes arose as to the original discovery of the geoheliocentric
system. A German mathematician Nicholas Reymers Bir, otherwise known as
Ursus, claimed to have discovered such a scheme in 1585 and that Tycho had
stolen it from him. Ursus’ scheme, published in his Foundation of Astronomy25
in 1588, differed from Tycho’s in that the orbit of Mars enclosed completely
that of the Sun, and Tycho claimed that Ursus, on a visit to Tycho in 1584, must
have looked surreptitiously at Tycho’s papers and seen one of his diagrams that
incorrectly had this feature. Helisaeus Roslin published what he claimed was his
own world system in 1597, though it would appear to have been cribbed directly
from Ursus, and Duncan Liddel, who had visited Hven in 1587 and 1588 and
seen pre-publication details of Tycho’s new theory, lectured in Germany on the
‘Tychonic’ system, claiming it as his own. Tycho was incensed. In 1598 he
wrote:

We have remedied [difficulties in the earlier systems] by means of a special
hypothesis that we invented and worked out fourteen years ago, basing it on the
phenomena. There are certain persons, of whom I know three with distinguished
names, who have not been ashamed to appropriate this hypothesis and present it as
their own invention. In due course I shall, God willing, point out the occasions on
which they did it, and repudiate and refute their immense impudence, and I shall
demonstrate that the fact of the matter is as I say, and I shall do that so clearly that it
will be impossible for impartial men to doubt or contradict me.”

Ursus’ scheme differed from Tycho’s in another important respect: he as-
signed a daily rotation about its own axis to the Earth. He thus became one of the

** While the influence of Tycho’s world system was short-lived in Europe, it had a much longer
life in China. It was exported there by the Jesuits, many of whom were very knowledgeable in
astronomy and for whom a moving Earth was anathema. The Tychonic system appears in the
Imperial Encyclopedia of 1726. The heliocentric astronomy of the West did not really gain
followers in China until the early nineteenth century. Part of the reason for this is the fact that
the main concern of the Chinese with astronomical phenomena was in the production of
calendars, and the principles by which these were made were arithmetical rather than
geometrical in origin. Hence, the particular world-view to which one subscribed was not very
important. In addition, there was very little transfer of ideas between China and the West in the
eighteenth century (see Yoke (1983)).

The Foundation of Astronomy is concerned mostly with mathematical methods used in
practical astronomy, including a highly competent treatment of prosthaphaeresis based on the
2 work of Jost Biirgi and Paul Wittich.

“ Quoted from Gingerich and Westman (1988), p. 19.

2!
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first proponents of what became known as the semi-Tychonic world system.27
Tycho did not believe in the daily rotation of the Earth, but did admit that it was
a possibility. Commenting on Copernicus’ triple motion of the Earth he wrote:

But whether this third motion, that accounts for the daily revolution, belongs to the
earth and nearby elements, is hard to say .. .. It is likely nonetheless that such a fast
motion could not belong to the earth, a body very heavy and dense and opaque, but
rather belongs to the sky itself whose form and subtle and constant matter are better
suited to a perpetual motion, however fast.”

Tycho’s lunar theory

Tycho began making observations of the Moon around 1582 and he continued
to do so, though not always assiduously, for the next 15 years. He was well
aware that both the Alfonsine Tables and Prussian Tables left considerable
room for improvement, and also knew that the errors were worst at the octant
points. As he putitin a letter to a Bohemian physician and part-time astronomer,
Thaddeus Hayek:

And even though [Copernicus] has arrived at a much more agreeable and probable
theory for the moon than the Ptolemaic was, nevertheless not even this theory is
sufficient to explain the lunar cycles in every case. In syzygies and quadratures he
deserves praise, although not even in these places does he set forth everything with
the necessary precision. But in the four places already mentioned, which are
intermediate, he by no means saves the appearances. . .*

In a series of observations in 1594, Tycho discovered the first wholly new
astronomical phenomenon since Ptolemy’s time, and one that reduced the error
from existing theories of the longitude of the Moon by almost 75 per cent. He
observed that the Moon sped up as it approached the syzygies and slowed down
near the quadratures. This phenomenon, which shows up as a displacement of
about 40" from the position at the octants predicted by previous theories, has
ever since been known by the name Tycho gave to it: the ‘variation’.”

In Tycho’s original lunar theory, he accounted for the variation by modifying
Copernicus’ theory of the Moon (which is the same as that of Ibn al-Shatir,
see Figure 4.7 p.105). He made the centre of the deferent revolve around the
Earth on a small circle twice each synodic month, and by this mechanism

7 A detailed description of the many Tychonic and semi-Tychonic planetary systems that were
proposed is given in Schofield (1981).
Quoted from Blair (1990). % Quoted from Thoren (1990) p. 327.
Tycho’s discovery of the variation is described in detail in Thoren (1967b).
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managed to produce displacements of about 45" in the position of the Moon
at the octants, while leaving the position of the Moon at the syzygies and
quadratures unchanged. He modified further the traditional theory by making
the centre of the larger epicycle (D in Figure 4.7) rotate around another small
circle with a period of 1 year. This mechanism produced a change in longitude
that oscillated between &+ 11’ over the period of 1 year. It is not known how
Tycho came to discover this annual variation in the Moon’s motion, but it
was explained by Newton a century later as being due to the varying distance
between the Sun and the Earth—Moon system over the course of 1 year.31

However, this theory had the defect that the ratio of the greatest and least
distances of the Moon did not correspond to the observed changes in apparent
diameter. Ibn al-Shatir had managed to bring this ratio more into line with
reality from that inherent in Ptolemy’s theory, but it was still too large. The
modification that was made to Tycho’s model actually was performed by his
long-serving assistant, Longomontanus, and consisted essentially of replacing
the larger of Ibn al-Shatir’s epicycles, of radius |, by two smaller ones of radii
2r1/3 and ry /3. The resulting set of epicycles had to be reshuffled so as to get
the scheme to work, but the final theory resulted in very accurate displacements
of about 40’ 30” in the position of the Moon at the octants, and the ratio of the
greatest to least distances between the Earth and the Moon had been reduced
from the Copernican value of 1.31 to the much more accurate 1.16 (1.141 being
the modern value).32

Tycho also considered the problem of the Moon’s latitude, and observed
that the angle at which the Moon’s orbit was inclined to the ecliptic was not
the constant 5° that everyone assumed.” Observations in 1587 had led him to
believe that the inclination of the orbit of the Moon actually was 5%0, but in
1595 his observations indicated that the orbital plane actually varied between
Sand5 %O during a synodic month. He postulated a small nutation, reminiscent
of earlier theories of trepidation, with a period of half a synodic month; this is
illustrated (greatly exaggerated) in Figure 6.4. At a conjunction or opposition,
the pole of the orbit of the Moon is at P; and the inclination of the orbit is 5°,
whereas at quadrature this pole is at P; and the inclination is 5 %O. This latitude
theory predicts an oscillation in the nodes of the lunar orbit: as the pole of the
orbit of the Moon moves around the small circle Py, P», P3, P4 the ascending
node, which is B, at syzygy, oscillates through the points By, B,, B3, B4 along

*" The fact that Tycho arrived at exactly the 11’ that modern theory predicts would appear to have
been somewhat fortuitous, especially as he was out by about 24° in the phase of the oscillation

N (see Thoren (1990), Appendix 3).

;3 Details can be found in Jacobsen (1999).

" Full details of Tycho’s lunar latitude theories are given in Thoren (1967a).
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Fig. 6.4. The nutation of the pole of the orbit of the Moon in Tycho’s theory.

the ecliptic. Tycho realized this and looked back at some previous observations
that seemed to confirm this effect.

Ever since his patron King Frederick II had died in 1588, Tycho’s status
and influence had been on the decline and by the time the 19-year-old King
Christian IV was crowned in 1596 he had had enough. He left Hven in April
1597, and after a few weeks in Copenhagen left Denmark altogether. He still
harboured hopes that he might return to a position of power in Denmark, but
when he realized that this was not to be he began to look around for another
patron, and who better than the ruler of the Holy Roman Empire, Rudolph II,
in Prague.

However, a problem arose in the form of his old adversary, Ursus, who since
1591 had been the Imperial Mathematician to the Emperor. Ursus found out
that Tycho was planning to go to Prague and, perhaps thinking that his job was
threatened, decided to counterattack. He published a book, On Astronomical
Hypotheses,34 in which he claimed that Tycho had stolen the idea for a geohelio-
centric universe from him and remarked that Tycho should have stuck to what
he was good at — observing — and left the important cosmological questions

* Jardine (1984) provides a survey together with a partial translation.
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to those of higher intellect, like himself! He even descended to making fun of
Tycho’s nose, which had been disfigured severely in a brawl by an opponent’s
sword when Tycho was 20, and claiming that Tycho’s wife and daughter had
been available for the ‘use’ of visitors to Hven.

Tycho’s reputation as an astronomer was much greater than that of Ursus
and eventually he got the royal patronage he was after. The personal attacks
that Ursus had launched in his book damaged what reputation he did have so
much that he was forced to flee Prague soon after Tycho’s arrival in 1599. Tycho
set up his household in Benatky castle, just north of Prague, and gradually he
began to turn the estate into a new Uraniborg so that he could continue with his
observations. What Tycho badly needed, however, was manpower. On Hven he
had had numerous assistants who could help him both with observing and with
the mountain of complex astronomical calculations that were required, but he
had left all of this behind. The man who did arrive in Prague in 1600 to be
Tycho’s assistant ended up completely revolutionizing astronomy.

Kepler

Of all the significant figures in the history of astronomy, Johannes Kepler is
perhaps the most intriguing. His works display a mixture of rational brilliance
and mystic flights of fancy, the two appearing to coexist in perfect harmony.
He was born in 1571 in Weil der Stadt near Stuttgar[.35 In 1589, he became
a student of theology at the University of Tiibingen, intending to go on and
become a Lutheran clergyman, and as part of his education in the Faculty of
Arts he studied mathematics and astronomy. His teacher was Michael Mastlin,
from whom he learned the Copernican theory36 and it did not take long before
Kepler was convinced that Copernicus was right. In 1596, in the preface to his
first major work, he wrote:

... six years ago, when I was studying under the distinguished Master Michael
Mistlin at Tiibingen, I was disturbed by the many difficulties of the usual
conception of the universe, and I was so delighted with Copernicus, whom

Mr Mistlin often mentioned in his lectures, that I not only frequently defended his

* The standard biography of Kepler is the scholarly work of Caspar (1993); more concise
accounts include those of Armitage (1966) and Voelkel (1999). A number of Kepler’s letters
are translated in Baumgardt (1952). Kepler’s life and work is the subject of a novel, Kepler, by

. John Banville (Banville (1981)).

~ It is probable that Mistlin taught the Copernican theory only to a few of the brighter students,
including Kepler, while for most students he taught the easier parts of Ptolemaic theory (see
Methuen (1996)).
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opinions at the disputations of candidates in physics but even wrote out a thorough
disputation on the first motion, arguing that it comes about by the earth’s

. 37
revolution.

In 1594, he was recommended for the post of mathematics teacher at the
Protestant seminary in Graz. Kepler had set his sights on entering the service
of the Church but, significantly for astronomy and, indeed, science as a whole,
he accepted the job. Here he could dedicate more of his time to astronomical
matters and, in particular, he sought to explain why the number of planets, the
sizes of their orbits and their speeds, were as they were. Here we see that already
Kepler was asking new questions. Not since Philolaus’ universe containing
the sacred ten celestial spheres had the number of heavenly bodies been the
subject of serious attention. Kepler’s desire to find meanings in astronomical
phenomena went hand in hand with his great interest in astrology, which he
maintained throughout his life. His approach to this was rather different to
that of most other astrologers, though. He believed that it was the continuous
physical interaction between the heavens and the Earth that had a bearing on
people’s lives rather than the configuration of the heavens at any particular
Instant:

How does the face of the sky affect the character of a man at the moment of his
birth? It affects the human being as long as he lives in no other way than the knots
which the peasant haphazardly puts around the pumpkin. They do not make the
pumpkin grow but decide its shape. So does the sky; it does not give the human
being morals, happiness, children, fortune, and wife, but it shapes everything in
which the human being is engaged.38

In theoretical astronomy, Kepler came out openly in support of Copernicus.
He knew that the tables constructed from the heliocentric theory were more
accurate than those from Ptolemy, but it was the ability of the Copernican
system to explain phenomena that was the source of Kepler’s belief in its truth.
Copernicus had provided the reason why the retrograde motion of the superior
planets always occurred when they were in opposition, but that for Mercury
and Venus it happened at conjunction. The heliocentric theory explained why
the inferior planets were never seen in opposition and why their zodiacal periods
were the same as that of the Sun. All these explanations followed from setting
the Earth in motion round the Sun.

Kepler believed that this all pointed to the existence of a rational order
behind the structure of the Copernican universe. He observed a ‘wonderful
resemblance’ between the Holy Trinity and the Sun, stars and intervening space.

3; KEPLER Secret of the Universe. Translations are from Kepler (1981).
Quoted from Peterson (1993).
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God the Father lay at the centre of the Universe, God the Son on the outer
boundary and God the Holy Ghost filled the space in-between.” His attempts
to understand the reasons behind the structure of the Universe formed the subject
of Kepler’s first famous work, the Secret of the Universe, published in Tiibingen
in 1596."

The Secret of the Universe

Kepler never regretted his change in chosen career; in fact, he believed that the
greatest service he could provide was to uncover the beauty in God’s design. In
a letter to Maistlin in 1595, after discovering what he believed to be the reason
behind the spacings of the planets, he wrote:

For a long time I wanted to become a theologian; for a long time I was restless.
Now, however, behold how through my effort God is being celebrated through
astronomy.41

As far as Kepler was concerned (since he was a Copernican) there were six
planets, and he began by searching for numerical patterns in the dimensions
of their orbits. This did not work, so he hypothesized the existence of new, as
yet undiscovered, planets between Mars and Jupiter and between Venus and
Mercury, and tried to fix their distances so that a pattern would emerge, but
again he had no success. Kepler’s next idea originated from his astrological
work. We have noted already that conjunctions of Jupiter and Saturn were
considered particularly significant in astrological circles. These events happen
every 20 years or so and each successive conjunction occurs about 117° behind
the previous one.” He plotted the positions of these conjunctions in the zodiac

* An in-depth study of Kepler’s religious and philosophical beliefs and how they interacted with
his scientific work is beyond the scope of this book. For a detailed account see, for example,
Kozhamthadam (1994).
The publication of this work, with the Latin title Mysterium cosmographicum, was supervised
by Mistlin, who was pleased that Kepler was openly advocating the heliocentric theory. Since
some of Kepler’s treatment of Copernicus was rather brief, Mistlin decided to add what he
believed to be the best exposition of the theory, Rheticus’ First Report, to the publication (see
Rosen (1985b)). Kepler’s cosmological theories are analysed in Field ((1988)) and the
philosophical ideas that underpinned his approach to astronomy are explored in Martens
" (2000).

Quoted from Gingerich (1972).
The rates of revolution of Jupiter and Saturn around the zodiac are 30.35 and 12.22° per year,
respectively. The difference between these is 18.13° per year and so it takes
360/18.13 ~ 19.86 years for the two planets to be seen at the same longitude again. In this
time, Saturn has moved on 19.86 x 12.22 ~ 242.7°, which is 360 — 242.7 = 117.3° behind
the previous conjunction.

40
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Fig. 6.5. Successive conjunctions of Jupiter and Saturn. Given a conjunction at 1,
the next will be at 2, and so on.

on a circle and joined them up (see Figure 6.5) and noticed that the ratio of
the radii of the outer circle to the inner circle that is formed by this procedure
looked remarkably like the ratio of the sizes of the orbits of Saturn and Jupiter.
The inner circle is very close to being inscribed inside an equilateral triangle
and, if this were the case, the ratio of the radii would be 2, which was fairly close
to the ratio of Saturn’s distance to that of Jupiter (about 1.8 in the Copernican
theory) and he tried to find similar relationships involving different polygons
(squares, pentagons and so on) and match them to other planetary ratios. This
did not work either, but ‘the end of this useless attempt was also the beginning
of the last, and successful one’.

In all Kepler’s previous theorizing there was nothing to explain why there
were precisely six planets,43 but now he stumbled across an idea that both
solved this riddle and gave an explanation of the planetary distances. Instead
of circumscribing and inscribing circles around regular polygons, why not do
the same with spheres and regular polyhedra? This has the advantage that it is a
three-dimensional theory but, more importantly, since there are only five such

* Rheticus had suggested that there were six because six was the first perfect number (a perfect
number is one that is the sum of its proper factors, 6 = 1+2+3,28 =1+2+4+7 + 14,
etc.; these numbers had been the subject of study since Pythagorean times) but Kepler did not
consider this a likely reason. Koyré (1973) finds it curious that neither Rheticus nor Kepler
came up with the reason that the Universe was created in 6 days.
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Table 6.1. Ratios of planetary distances according to
Kepler’s theory of regular solids

Kepler Copernicus
Saturn/Jupiter Cube 577 635
Jupiter/Mars Tetrahedron 333 333
Mars/Earth Dodecahedron 795 757
Earth/Venus Icosahedron 795 794
Venus/Mercury Octahedron 577
207 723

solids, there is exactly one for each interplanetary gap. When he found he could
obtain reasonable quantitative agreement from this system, he was overjoyed;
he felt that he had found the Creator’s plan.

Starting from Mercury, Kepler envisioned its orbit as a sphere inscribed
in an octahedron that was itself circumscribed by another sphere, the orbit
of Venus. The orbits of the other planets (Earth, Mars, Jupiter, and Saturn)
were each spheres separated similarly by an icosahedron, a dodecahedron, a
tetrahedron, and a cube. In Table 6.1, the numbers in the third column are the
values computed by Kepler for the radii of the inscribed sphere in the given
solid, if the circumscribed sphere has a radius of 1000. The fourth column
shows numbers Kepler calculated from Copernican theory taking into account
the thickness of the planetary spheres, which are required to fill the space from
the minimum to maximum distance of the planet from the Sun. In order to get
satisfactory agreement for Venus and Mercury, Kepler found that he had to take
the circle inscribed in the square formed by the middle edges of the octahedron
(which gives the value 707 in table) rather than the inscribed sphere (which
gives 577). In his final scheme, everything fits to within 5 per cent, apart from
the Jupiter/Saturn ratio, which Kepler explained away by appealing to the fact
that Jupiter and Saturn were so far away.

The numbers predicted by the new theory and those computed from
Copernicus do not quite match, but Kepler was not deterred. The planetary
theory in On the Revolutions is worked out with respect to the mean sun, rather
than the Sun itself, but Kepler was interested in the reasons behind the phys-
ical structure of the Universe, and surely it would be the distances to the Sun
that would be important, not the distances to some mathematically constructed
point. He needed, therefore, to know the maximum and minimum distances of
each planet from the Sun itself, based on Copernican theory, which could be
computed by combining the theory of the Earth with that of the planets. The
figures actually were provided by Mistlin, with whom Kepler kept up an active
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correspondence, but they do not lead to any improvement.44 Kepler never lost
faith in the idea that the number of planets was determined by the number of
regular solids. He reminded readers of the Harmony of the World (1619) that
he had made this discovery, though he did by then recognize that the theory as
set out in the Secret of the Universe was too simplistic.45

The judgement of history relegates Kepler’s polyhedral hypothesis for the
planetary spacings, which fills most of the Secret of the Universe, to an inter-
esting curiosity. But three of the twenty-three chapters are about a different
problem — that of explaining the speeds of the planets — and here Kepler’s treat-
ment proved extremely significant. Kepler noted that as one moved out through
the planets, the periods of their orbits increased at a greater rate than their
distances from the Sun. Hence, the speeds of the planets decreased. Kepler’s
conclusion was that the driving force behind the Universe comes from the Sun
(he referred to a ‘moving soul’ within the Sun) and that the effect of this ‘force’
weakens as one moves away from the Sun. This also provided added justification
for the position of the Sun at the centre of the Universe.

Quite how the orbital periods depended on the distances from the Sun eluded
Kepler for the time being — he simply did not have data accurate enough for
him to find the correct law" — but in retrospect we know that he was asking the
right questions. Kepler also realized that his physical hypothesis implied that
the planets moved at varying speeds as they moved round their orbits, by virtue
of the fact that the distance to the Sun varied. Again, Kepler did not have
the information at his disposal that could point him to the correct relationship
between speed and distance, but the desire to find a physical cause for the
planetary motions had led him to a crucial realization: planets do not move at a
constant speed. Of course, he did not yet have any proof for his hypothesis, but
he had broken away from the 2000-year-old dogma of uniform circular motions.

Kepler realized that Ptolemy had achieved just such a change in speed by his
introduction of the equant. When a planet is closest to the Earth in Ptolemy’s
theory and, hence, furthest from the equant, it must move more quickly than at

“ A detailed analysis of the numerical accuracy of the polyhedral hypothesis, including
corrections to Méstlin’s calculations, is given in Brackenridge (1982).
A second edition of the Secret of the Universe (with extensive annotations) was published in
1621, after Kepler had made the discoveries of his three laws of planetary motion. This
suggests that Kepler still saw some value in his early work (see Field (1988)).
It is often written that at this time Kepler suggested that the relationship between the orbital
period T and the distance r was T r2, but this is not true. In the Secret of the Universe,
Chapter XX, Kepler proposed the relationship (7> — T1)/T1 = 2(rp — r1)/r1, where r; and r,
are the distances of successive planets (, > r;) and 77 and 75 are their respective periods.
This law is equivalent to 7>/ T1 = 2(r2/r1) — 1 which is not of the form 7" o r* for any «.
Kepler did later hypothesize the law T o 2 in Chapter 39 of the New Astronomy (1609).
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other parts of its orbit so as to maintain its uniform angular motion with respect to
the equant point. Copernicus had removed the equant and replaced it by an extra
epicycle, but nevertheless, the effect was pretty much the same, except that now
it was the distance to the Sun that was important. Kepler preferred Ptolemy’s
equant mechanism since it seemed related more directly to his physical idea of
the Sun as the driving force in the Universe.

Throughout his life, Kepler sought to discover the harmonies that underlay
God’s Creation. Already in 1599 he was planning a sequel to the Secret of
the Universe but, in order to make progress, Kepler needed more data. The one
person who possessed large quantities of accurate observational data was Tycho
Brahe and, as luck would have it, it was precisely this data with which Kepler
was entrusted.

Tycho’s assistant

The story of how Kepler came to be Tycho Brahe’s assistant is a complicated
one.” Before Kepler completed the Secret of the Universe, he wrote a letter about
it to Ursus, asking for the Imperial Mathematician’s opinion on his construction
involving the Platonic solids. Unbeknown to Kepler, Ursus published this letter
(which, unsurprisingly as it was from a young man to one of considerable
status, was full of praise for Ursus) on the title page of his attack on Tycho, On
Astronomical Hypotheses.

When it was finished in 1597, Kepler sent a copy of the Secret of the Universe
to several astronomers, including Tycho, again asking for an opinion. Unfortu-
nately, Kepler never received Tycho’s reply and only heard through Mistlin that
Tycho was upset about Kepler’s letter having been published in Ursus’ book.
Kepler was mortified. He knew little of the feud between Tycho and Ursus but
wanted to keep on the right side of Tycho so that he could gain access to his
observational data. Kepler also knew that his days in Graz were numbered.
Following the return of Archduke Ferdinand to the province of Styria in 1598,
Graz was not a place for Protestants to live, and so Kepler decided that it was in
his interests to apologize to Tycho, which he managed to do in a manner Tycho
found acceptable. In a letter to Kepler in 1599, Tycho wrote:

Even though I have not met you face to face, most learned sir, nevertheless I love
you very dearly on account of the excellent qualities of your mind . . .

" Described in detail in, for example, Jardine (1984) and Thoren (1990) (see also Ferguson
. (2002)).
Quoted from Thoren (1990).
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The fact that Ursus had been forced out of Prague was not sufficient for Tycho,
and he was intent on ruining Ursus by dragging him through the courts on
the ground that he had not submitted his offensive book to the official censor
prior to publication. Tycho believed that evidence of Ursus’ behaviour from
Kepler would further help his cause and so, since clearly he showed promise
as an astronomer as testified by the Secret of the Universe, Tycho invited him
to become his assistant.

Kepler visited Tycho at Benatky in early 1600, but things did not work
out immediately — the two men did not really get on with each other. Tycho
could not manage to secure Kepler an official position, and Kepler returned
to Graz to sort out his affairs there. Then two significant things happened.
Longomontanus, Tycho’s most senior assistant, after finishing his revisions of
the lunar theory, left to return to Denmark,” and Ursus died. Tycho still wanted
to vindicate his honour and formally establish that he was the originator of
the geoheliocentric hypothesis, and decided that he would produce a properly
reasoned demonstration of his claims. At the same time, life became unbearable
in Graz for Kepler, and he moved back to Prague with his wife and daughter.
He joined the Tycho household, still with no official position, and Tycho set
him to work on what became A Defence of Tycho against Ursus, often referred
to as the Apologia.50

In this short treatise — which is more than just a simple refutation of Ursus’
claims to be the discoverer of the geoheliocentric hypothesis — Kepler made one
of the first major efforts to trace the history of ancient astronomy and examined
the question of the nature of astronomical hypotheses in general.51 Throughout
the history of astronomy, the debate had raged as to whether the mathematical
theories used to describe celestial motions actually said anything about reality.
Many, including Ursus, believed that the fact that a theory correctly predicted
planetary longitudes did not provide any evidence that the planets actually
moved as implied by the theory, since it was perfectly possible for correct
conclusions to be drawn from false premises. However, Kepler realized that
just because two geometrical theories gave the same predictions, it did not

49 After Tycho’s death, Longomontanus (Christian Sgrenson) developed his own

) all-encompassing semi-Tychonic cosmology (see Moesgaard (1975, 1977)).
This work was not published until 1858 and it is translated in Jardine (1984). Martens (2000)
describes the Apologia as an early modern treatise on realism.

~ Unlike most of his predecessors, Kepler often referred to the contributions of earlier
philosophers and astronomers. In his last major work, the Rudolphine Tables, he included an
account of the history of astronomy from its ancient origins. For a detailed discussion of
Kepler’s approach to history, see Grafton (1992).



176 Tycho Brahe, Kepler, and the ellipse

mean that they had the same status as possible models of reality:

Even if the conclusions of two hypotheses coincide in the geometrical realm, each
hypothesis will have its own peculiar corollary in the physical realm.”

Clearly, Kepler believed that understanding the physical nature of the Universe
should be the subject of astronomical study, in sharp contrast to those like
Osiander — the author of the preface to On the Revolutions — who believed
that astronomical hypotheses were unimportant provided they predicted the
phenomena correctly.

In August 1601, Tycho obtained finally an official position for Kepler, under
the condition that Tycho’s planetary tables would be published as the Rudol-
phine Tables. Soon afterwards, in October, Tycho died and the emperor put
Tycho’s incomplete works in Kepler’s hands” and promoted him to the posi-
tion of Imperial Mathematician. Even though Rudolph died in 1612, Kepler
still used his name in the title of the planetary tables he produced in 1627.

Over the next 5 years, Kepler worked extremely hard trying to understand the
reasons behind the motions of the planets, and now he had the data he needed.
One of the tasks Longomontanus had been involved with before he left Prague
had been an analysis of the motion of Mars, and Kepler took this over after his
departure.54 This was particularly fortunate for Kepler — he later attributed it to
Divine Providence — because only the orbit of Mars has an eccentricity large
enough to make possible the discovery of the correct shape of its orbit from
Tycho’s data.” The culmination of Kepler’s studies into the orbit of Mars was
the New Astronomy (1609),56 which he referred to as ‘warfare’ with Mars, itself
the god of war.

KEPLER Apologia pro Tychone contra Ursum. Quoted from Jardine (1984).

Kepler supervised the first complete printing of the great work Tycho had been preparing ever
since the 1580s, Astronomiae instauratae progymnasmata (Introductory Exercises Toward a
Restored Astronomy) (1602).

Kepler bet Longomontanus that he would solve the problem of the orbit of Mars within 8 days!
(see Caspar 1993, p. 126).

Even for Mars, the deviation from circularity is very small. The orbit is an ellipse with minor
axis 0.996 times the major axis. The eccentricity of Mercury’s orbit is more than twice that of
Mars, but observational data for Mercury was scant and inaccurate.

The full Latin title, which begins Astronomia nova . . ., translates as New Astronomy Based
upon Causes, or Celestial Physics, Treated by Means of Commentaries on the Motions of the
Star Mars from the Observations of Tycho Brahe. The first English translation was published as
recently as 1992 (Kepler (1992)) and all quotations are taken from this source. Some lengthy
passages are translated in Koyré (1973) in which the work is discussed in some detail. Another
book in which a thorough account is given of the contents of the New Astronomy — particularly
the physical aspects of Kepler’s astronomy — is Stephenson (1987) and the technical aspects of
the work are described in, among others, Aiton (1969) and Whiteside (1974).
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The New Astronomy, and the first two laws of
planetary motion

The style of the New Astronomy was different totally from that of Ptolemy or
Copernicus. Astronomers before Kepler had presented their final, more or less
polished, theories, providing few clues as to how they were derived. Kepler,
on the other hand, described his process of discovery in great detail, telling the
reader about all his fruitless efforts as well as his successful ideas. He justified
his approach by considering other great voyages of discovery, like those of
Columbus and Magellan, which would have been much less enjoyable to read
about if those describing them had only told us about their successes. Not
only was Kepler’s style novel, the astronomy that he presented really was new,
with a completely different emphasis to that of his predecessors. Instead of
trying to reproduce the celestial motions as accurately as possible with certain
special geometrical constructions, Kepler was attempting to understand the
basic structure of God’s Universe. The appropriate geometrical tools were not
to be decided beforehand, but to be discovered as part of the exploration process.

In the lengthy introduction, Kepler set out his arguments against Aristotelian
physics and for the Copernican view of the Universe. He was attempting to
develop a physics based on causes, and criticized Aristotle’s notion that earthly
bodies naturally move toward the centre of the Earth:

A mathematical point, whether or not it is the centre of the world, can neither affect
. . . . 57
the motion of heavy bodies nor act as an object toward which they tend.

Kepler then described his own theory of ‘gravity’, which contains the seeds of
what would, in Newton’s hands, become the universal theory of gravitation; he
thought of gravity as a mutual attraction between bodies similar to the force of
magnetism. The one aspect of Aristotelian physics that Kepler did not manage
to shake off, and which hindered him throughout his attempts to find a phys-
ical theory of the Universe, was the principle of inertia. Kepler believed that
unless a body was under the influence of some external ‘force’ it would remain
motionless:

Every corporeal substance . . . has been made so as to be suited to rest in every place
in which it is put by itself, outside the sphere of influence of a kindred body.58

Kepler presented numerous arguments as to why the Copernican system was
to be preferred to the Ptolemaic or to that of Tycho Brahe, and even described at

¥ KEPLER New Astronomy, Introduction.

~ KEPLER New Astronomy, Introduction. Ironically, it was around this time that Galileo was
coming to realize that Aristotle’s principle of inertia was erroneous and that it was uniform
motion that was the natural state for a body.
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Fig. 6.6. Kepler’s vicarious hypothesis.

considerable length how Copernicanism can be reconciled with the Scriptures.
For those not sufficiently enlightened to accept his arguments he wrote:

But whoever is too stupid to understand astronomical science, or too weak to
believe Copernicus without affecting his faith, I will advise him that, having
dismissed astronomical studies and having damned whatever philosophical
opinions he pleases, he mind his own business and betake himself home to scratch
his own dirt patch, abandoning this wandering about the world.”

After having left the reader in no doubt that his aim was to reform astronomy
so that it both reproduced accurately the phenomena and was based on physical
causes, Kepler began his description of his battle with Mars.

Kepler’s first attack was extremely useful in some respects, but flawed, and
he called it a ‘vicarious hypothesis’, i.e. a substitute for the real thing. When
working on the Secret of the Universe, Kepler realized that the equant mecha-
nism, incorporated into a heliocentric universe, had the effect of slowing a planet
near aphelion (the point on the orbit furthest from the Sun) and increasing its
speed near perihelion (the point closest to the Sun). Whereas Copernicus had
taken great pains to remove the equant from planetary theory so as to restore as-
tronomy to the fundamental Pythagorean principle of uniform circular motion,
Kepler saw no place for physically meaningless epicycles, and so reinstated
Ptolemy’s device. Ptolemy had made the distance of the equant from the centre
of the deferent exactly the same as the eccentricity of the orbit, and Kepler
wondered if he could achieve a system that agreed better with observations by
moving its position.

In Figure 6.6, M is Mars orbiting on an eccentric circle of radius R around
the Sun S, which is a distance gR from the centre O. Because Kepler was
convinced of the physical role played by the Sun, the point S was the actual
Sun and not the mean sun which had formed the basis of Copernicus’ planetary

59 .
KEPLER New Astronomy, Introduction.



The New Astronomy, and the first two laws of planetary motion 179

theories. The angle « is the true anomaly, which needs to be computed as a
function of time. The point M is made to rotate with uniform angular speed
with respect to an equant Q, which is placed a distance f R from O, as shown.
The angle &, the mean anomaly, thus increases uniformly with time. We will
begin by using mathematical techniques not devised until about 100 years after
Kepler (in particular the binomial theorem and the series expansion for tan x)
to see what can be achieved.
From elementary geometry we have it that

risin@ = rsina and ricosa+ (f + g)R =rcosa,

which, on division, leads to
+ R\
tana = (1 + (f_g)_) tan o 6.1)
71 COSQ

The right-hand side can now be expanded in powers of the small quantities
f and g. The cosine rule applied to triangle O QM gives R* = r? + f?R> +
2 f Rr; cos o, from which

R/ri =14 fcosa+ O(f?).
Substituting this back into Eqn (6.1) we find that
tana = [1 — (f + g)(seca+ f) + (f + g)*sec’ @l tana + O(f3),

the symbol O(f?) being used as shorthand for any third-order quantity. It
follows, after some tedious algebra, that

a=a—(f+g)sina+ 1g(f +g)sin2a+ O(f?).  (6.2)

Now, as Kepler eventually would discover, planets move on elliptical orbits,
and the actual relationship between the true anomaly (the longitude as measured
from the Sun) and the mean anomaly (2r¢/ T, where ¢ is the time and T is the
orbital period), is”

o =& —2esin@ + 2e?sin2a + O(e?),

where e is the eccentricity of the ellipse. These two expressions agree up to
second order if we take f = 3e/4 and g = 5¢/4,1.e. f/g = 3/5.

60 . . . .
Note that in the seventeenth century it was customary to measure the anomalies from aphelion
(A in Figure 6.6), though nowadays they are measured usually from perihelion so as to permit
a unified treatment of planets and comets. Formulas can be transferred from one system to the
other by simply replacing « and @ by 7 + « and 7= + &, respectively.
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Fig. 6.7. Geocentric latitudes.

Kepler’s procedure was nothing like the above, however. He used a compli-
cated iterative geometrical procedure to work out from Tycho’s observations
the best possible value for f/g. This clearly was incredibly tedious, since he
wrote:

If this wearisome method has filled you with loathing, it should more properly fill
you with compassion for me, as I have gone through it at least 70 times at the
expense of a great deal of time. .. o

Kepler’s calculations led him to conclude that, based on a radius of 100 000, he
should take f = 7232 and g = 11332, for which f/g &~ 0.64, which is very
close to the optimal value. The maximum deviation from the ideal elliptical
value is about 2’ of arc, which represents a huge improvement over Copernicus
and is less than the errors introduced from other sources in Kepler’s calcu-
lations.” As far as longitudes were concerned, Kepler’s vicarious hypothesis
succeeded brilliantly, and he continued to use it as a method for determining
longitudes long after he had discarded it as a physical theory.

Next, Kepler turned his attention to latitudes. In Kepler’s physically mo-
tivated astronomy there was no place for Copernicus’ cumbersome theory in
which the planetary latitudes were linked to the motion of the Earth. As far as
Kepler was concerned, Mars was orbiting the Sun, so it followed that its motion
lay in a plane through the Sun, and he determined that this plane had an incli-
nation of 1° 50’ to the ecliptic.63 In a heliocentric system, the latitude as viewed
from the Earth can be considerably larger than this orbital inclination, as the
Earth can be much nearer the planet than the Sun. Thus, when a planet P is at
opposition, we have the situation shown in Figure 6.7, in which « is the latitude
as viewed from the Sun, which, in the case of Mars, has a maximum value of
1°50', and 0 is the geocentric latitude. By measuring 6 and determining o from

" KEPLER New Astronomy, Chapter 16. The reason Kepler carried out so many iterations was
due largely to the lack of any theory for dealing with redundant observations (see Gingerich
(1973b)). Kepler’s iterative scheme is described succinctly in Kozhamthadam (1994),

5 Chapter 6.
See Whiteside (1974).

- Kepler actually used three different methods for computing the inclination, each yielding the
same answer. This was confirmation that the plane of the orbit did pass through the Sun (see
Jacobsen (1999)).
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his simple latitude theory, Kepler then could solve the triangle S E P and, hence,
determine the distance to the planet in terms of the Earth—Sun distance.

Before Kepler, astronomers had been satisfied with separate theories for
latitude and longitude, but to Kepler, who for the first time was basing his as-
tronomy on physical principles, both phenomena should have the same cause.
Thus, he checked to see whether his hypothesis matched latitude observations.
The angles involved are small but, nevertheless, the accuracy of Tycho’s obser-
vations was sufficient to show Kepler that his vicarious hypothesis was wrong.
For an ellipse with major axis of length 2R and with the Sun at one focus, the
Sun—Planet distance is given in powers of the eccentricity by

r/R=1+ecosa —e?sin”a + 0O(e%),

but the vicarious hypothesis has (from the cosine rule applied to the triangle
OSM in Figure 6.6: R> = r> 4+ g?R> — 2rgR cos a):

r/R=1+gcosa — %gz sin? @ 4+ O(e?).

Thus, to obtain agreement to first order, we need to take g = e, and Kepler
found (using completely different methods, of course) that to construct a model
based on the equant that predicted accurately planetary distances, he needed to
place the equant and the Sun equidistant from the centre of the orbit, exactly
as Ptolemy had done in his geocentric scheme. The longitudes are then given,
from Eqn (6.2), by

o =a—2esina+ e’ sin2a + 0(e),

which now differs from the true relation at second order, the error being
(€%/4) sin 2a. The maximum error of about 8’ occurs when o = +45°, i.e. near
the octants. There is no way that anybody working with observations made prior
to Tycho’s could have detected such an error, but Kepler was well aware of the
accuracy of the data he was working with and realized there was a problem:

Since the divine benevolence has vouchsafed us Tycho Brahe, a most diligent
observer, from whose observations the 8 error in this Ptolemaic computation is
shown, it is fitting that we with thankful mind both acknowledge and honour this
benefit of God. For it is in this that we shall carry on, to find at length the true form
of the celestial motions . ..~

Kepler now had perfectly good theories for both longitude and latitude,
but they involved different geometrical constructions. His refusal to accept
an error of 8 when he tried to explain everything from a single model led

* KEPLER New Astronomy, Chapter 19.
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him onto a tortuous, but ultimately rewarding, path of discovery. Errors that
previously would have been considered acceptable became the driving force
behind the development of a radical, new astronomy. He turned his attention
to the theory of the Earth’s motion which he recognized as the key to a deeper
understanding of planetary orbits. Observations necessarily are made from the
Earth and then calculations performed to infer things about the orbit of a planet
round the Sun. Because of the high degree of precision to which Kepler was
working, this procedure could only work if the position of the Earth was known
accurately. Now, in Kepler’s physical conception of the Universe, there should
be no difference between the theory for the Earth and for the other planets.
But in On the Revolutions, all the planets except the Earth had an epicycle that
played the role of a Ptolemaic equant. In essence, neglecting the variations in
eccentricity that took place over a long period of time, Copernicus’ theory for
the orbit of the Earth was simply an eccentric circle, exactly like Hipparchus’
solar theory devised over 1500 years previously. The reason that solar theory
had lagged behind theories for the planets was that the methods developed for
making accurate observations of planetary positions were no use for the Sun as
it is never seen against the backdrop of fixed stars, and the one technique for
obtaining very accurate solar positions was based around eclipse observations,
which in turn depend on the highly complex motions of the Moon.

Kepler’s method for obtaining accurate positions of the Earth was inge-
nious. He could determine the position of the Earth from observations of Mars,
provided he could place Mars accurately. Martian longitudes were fine, as we
have seen, but not distances. Kepler got round this by using observations of
Mars separated by its zodiacal period (687 days) so that, however far Mars was
from the Sun, it was the same each time. With this device he managed to show
that the Earth’s orbit was better represented by a Ptolemaic equant—eccentric
mechanism, exactly like that of the other planets.65

Kepler appreciated the equivalence between Copernican and Ptolemaic plan-
etary theory, and he knew that, in Ptolemy’s scheme, the epicycle represented
the orbit of the Earth round the Sun. In order to modify Ptolemy’s astronomy so
as to take advantage of the refined Earth orbit, the whole of Kepler’s theory, com-
plete with equant and bisected eccentricity, had to be attached to the planet’s
deferent. With his improvement in the theory of the Earth’s motion, Kepler

65 Koyré (1973) suggested that Kepler’s calculations demonstrated that the Earth’s eccentricity
should be bisected as in Ptolemaic planetary theory, but Kepler’s method was not accurate
enough to show that the centre of the orbit of the Earth should be placed exactly half way
between the Sun and the equant (Wilson (1968)). He assumed simply that this was the case
because it fitted-in best with his physical theory in which speeds vary inversely with the
distance from the Sun.
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demonstrated conclusively the greater simplicity of the heliocentric structure
over the geocentric one, and realized he had hammered another nail in the coffin
of Ptolemaic astronomy:

And finally . . . the sun itself . . . will melt all this Ptolemaic apparatus like butter,

and will disperse the followers of Ptolemy, some to Copernicus’ camp, and some to
66

Brahe’s.

Kepler had suggested in the Secret of the Universe that the speed of an
individual planet was inversely proportional to its distance from the Sun.” In
the New Astronomy, he provides a geometrical demonstration of the fact that,
at least at perihelion and aphelion, this is precisely what Ptolemy’s equant
mechanism achieved. He also appreciated that, at other points on the orbit,
this distance law was only satisfied approximately, but he put this down to the
equant mechanism being a geometrical hypothesis that gave only approximate
agreement with the physical law. The latter he assumed to be true throughout
the orbit.

What was the ‘force’ that made the planets move in this way? Kepler believed
that it was similar to magnetism, which had been the subject of a very influential
book, On the Magnet,f’3 by the respected Englishman (and royal physician)
William Gilbert in 1600. Gilbert concluded that the Earth was a giant magnet
and Kepler reasoned that the ‘motive virtue’ present in the Sun which drove
the planets on their orbits was also present, to a lesser extent, in the Earth,
and that this was responsible for the Moon’s motion. Kepler’s force was not
the same as magnetism, as it did not attract the planets to the Sun; instead, he
envisioned a rotating Sun with rotating filaments emanating from it that drive
the planets round. Kepler’s erroneous conception of inertia meant that in order
for the planets to be moving continually, they had to be subject constantly to
a force in the direction of motion. This motive virtue spread out like light as
one moved away from the Sun and, hence, its effect diminished with distance.
But, unlike light — which spreads out spherically and, hence, varies inversely
as the square of the distance — Kepler wanted to produce a motion that decayed
in direct proportion to the distance, and so he believed that the effect of the

66 KEPLER New Astronomy, Chapter 26.
Kepler did not express the law in terms of the instantaneous speed of the planet, a concept with
which he was not entirely at ease, but instead said that the time taken to traverse equal arcs was
proportional to the distance from the Sun. This still leaves the concept of instantaneous
distance, but Kepler seems to have been more comfortable with this, even if, understandably,
he did not know how to treat it properly in his mathematics.
A translation of De magnete was produced in the late nineteenth century and reprinted in the
1950s (Gilbert (1958)). Gilbert argued strongly in favour of the daily rotation of the Earth, but
chose to sit on the fence regarding heliocentrism (Russell (1973)). Margolis (2002) argues that
his outlook was clearly Copernican even if he never stated the fact explicitly.
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filaments was in some way concentrated near the ecliptic plane in which the
planets move.

This could not be the whole story, though, because otherwise the planets
simply would orbit on circular paths centred on the Sun. So Kepler thought that
each planet had to possess its own innate ability to steer itself along its orbit.
He tried to work out what sort of additional motion a planet would have to have
in order to turn a circular orbit centred on the Sun into an eccentric circular or-
bit, and he tried various devices including epicycles and librations (oscillations
toward and away from the Sun). He concluded that the necessary variation in so-
lar distance was extremely complicated and, thus, that in a physical astronomy,
eccentric circular orbits were unnatural.

Nevertheless, he persevered with them and attempted to work out how a
planet would move around such an orbit under the influence of his distance
law. Since the distance was varying continuously, this was no easy task without
the use of the calculus, and Kepler had to develop his own methods.” With
the calculus, however, it is clear that, for a planet moving on a circular orbit,
Kepler’s distance law is equivalent to the statement

d 1

_a_
dr r

where 6 is the angle between the line connecting the planet to the centre of the

’

orbit and some fixed line, and r is the distance to the (eccentric) sun. In other
words, r o« [ rdf.

Kepler took the practical approach of dividing the circular orbit into 360
parts and in each part assuming that the distance to the Sun was constant; then
/' d6 can be treated as a sum. This procedure was ‘mechanical and tedious” and
Kepler looked for an alternative. He remembered that Archimedes had shown
that the area of a circle could be obtained by dividing it into ‘infinitely many’
triangles, and in a similar, but less rigorous, vein, Kepler argued that the sum
of all the (infinitely many) radii would be proportional to the area. If he could
simply compute the area of the sector to calculate the time, this would represent
a great saving of time. But it did not quite work, and the problem is illustrated
in Figure 6.8.

On the left, we have two positions of the planet, P; and P, as it orbits the
Sun S, which is displaced from the centre of the orbit O. As the planet moved
from P; to P,, Kepler wanted to sum up the lengths of all the lines connecting
the planet to the Sun as being proportional to the area of the triangle P; S P,. But

* The philosophical basis that underpins Kepler’s treatment of infinitesimals and in particular his
inspiration from the fifteenth century Platonist, Nicholas of Cusa, is described in Aiton (1973).
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Fig. 6.8. The difference between the area law and the distance law.

he knew that this could not be the case, since these lines were not perpendicular
to the base of the triangle. In the right-hand diagram there are two triangles,
the areas of which clearly are identical, since they have the same base and
height, but it is clear that the distances from the vertex to the base in the oblique
triangle are greater. It was intuitively obvious to Kepler that his area law would
be equivalent to his distance law only if the lines connecting the planet to the
Sun always were perpendicular to the path of the planet, which, of course, only
happens if the Sun is at the centre of the orbit. But the eccentricities involved
are very small, so Kepler argued that the area law, being much simpler to work
with, could be used as an approximation to the true distance law. The title to
Chapter 40 of the New Astronomy was ‘An imperfect method for computing
the equations from the physical hypothesis, which nonetheless suffices for the
theory of the sun or earth’.

Kepler then computed longitudes for Mars using this area law and found
errors from those computed using the vicarious hypothesis of 8’ at the octants.
Conscious of the fact that there were a number of possible causes for this error,
he proceeded systematically to show that they were all, including that caused
by using the area law instead of the distance law, far too small to account for
the 8 discrepancy. Finally, after a great deal of toil, Kepler realized that there
was only one possibility left: the orbit was not a circle.”

This was, of course, a crucial realization, but it is not at all surprising that
it took Kepler some time to arrive at it. Circles had been in the forefront of
astronomical theories throughout history, and no other curves, other than the
straight line, had ever been used in the explanation of physical phenomena.

* of course, the planetary paths in the Ptolemaic and Copernican systems are not circles either,
they are complicated curves built up from uniform circular motions; Kepler described them as
having the shape of pretzels (New Astronomy, Chapter 1). To those before Kepler, however, the
actual path was of secondary, or even negligible, importance, but in the new physical
astronomy it was fundamental.
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Once he had dropped boldly the notion of circularity, he was forced to step
out into a largely untrodden mathematical world, and numerous new questions
were raised. Most obvious was the question of the actual shape of the orbit. A
circle is a well-defined geometrical object, but saying that something is not a
circle does not narrow its form down very far. Kepler showed a great deal of
faith in his whole strategy at this point, since it is by no means obvious that a
solution to his problem existed that was both plausible physically and tractable
mathematically.

To find what shape the orbit really was, Kepler calculated the position of the
planet based on his eccentric circle theory and from observation. Since he now
had accurate positions for the Earth based on observations of Mars, he could
use the same procedure in reverse to obtain positions for Mars. He found that,
away from the line of apsides, the planet was always closer to the Sun than the
eccentric circle:

... the orbit of the planet is not a circle, but comes in gradually on both sides and
returns again to the circle’s distance at perigee. They are all accustomed to call the
shape of this sort of path ‘oval’."

Kepler looked round for a physically plausible mechanism that could give rise
to an oval orbit. In trying to devise a mechanism that converted a circular orbit
into an eccentric circle, Kepler earlier had used epicycles, but had found that the
required rate of rotation was non-uniform and, hence, physically unacceptable.
However, if the epicycle turned at a uniform rate (something for which Kepler
could come up with a plausible physical mechanism’) the orbit would not
be a circle, but an oval, and this was precisely what Kepler was after. So,
notwithstanding the fact that he had argued already that epicycles could not
physically be real, he proceeded to use precisely such a device. Kepler’s oval,
constructed from a circle and a uniformly rotating epicycle, is illustrated in
Figure 6.9 and using modern techniques we can judge its success.

We begin with a circle of radius R centred on the Sun §, on which is mounted
an epicycle of radius eR, centre C. Mars M rotates around the epicycle so that
CM makes an angle ¢ with the line SC extended. Here, ¢ is the time in units
of T/2m, where T is the orbital period of Mars or, in other words, ¢ is the

n KEPLER New Astronomy, Chapter 44.
In essence, Kepler hypothesized that the force from the Sun was sometimes attractive and
sometimes repulsive, depending on the relative orientations of the Sun and planet. Such a
phenomenon could be explained if, for example, we consider the Sun as a fixed magnet and a
planet as a magnet, the axis of which retains a constant direction with respect to the stars (see

. Stephenson (1987)).

Kepler’s investigations into the oval orbit are discussed in Aiton (1978).
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Fig. 6.9. Kepler’s oval.

mean anomaly. The distance from the Sun to Mars is r, and /M S A is the true
anomaly, o. According to Kepler’s area law approximation, « varies so that the
area of the sector M S A increases at a uniform rate. The cosine rule on triangle
SCM gives r2 = R*(1 + 2ecost + €2) and the area law is equivalent to (since
the area of a sector with angle 86 is r2860/2),

do _c 6.3)
dr %’ '
for some constant c. It follows that
c 28—1
azﬁ/(1+2ecost+e) dr (6.4)

2c tan-" l1—e tan Lt
= ——tan — Jtans¢ |,
R%2(1 — €2) 14+e 2

where the constant of integration has been chosen so that « = 0 when = 0.
We also require « = w when ¢t = w, so we must choose ¢ = R2(1 — 62), and
then

tan lo = l-e tan 1¢ (6.5)
27\l +e 2 '

If we expand the integrand in Eqn (6.4) in powers of e, and integrate term by
term, we obtain:

a=t—2esint + e*sin2t + 0(e?),

which is precisely the same as the result from the bisected eccentricity model
and, thus, subject to the same errors of 8 near the octants.
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Interestingly, Kepler’s oval has a simple and exact polar equa’tion.74 It follows
from Eqn (6.5) that

(1 4+ e?)cosa — 2e

cost = > ,
14+ e —2ecosa

and, hence, that

2 1 — 2)2
r——1+Zecost+eZ= ( e) .
1462 —2ecosa

R
If we expand this in powers of e, we obtain

r
R 1 +ecosa — 3e?sin* o + O(e?).

Thus, the eccentric circle model with which Kepler began overpredicts the
true distances and the oval underpredicts them by the same amount (at second
order). The oval orbit, since it improves on neither longitudes nor distances,
must therefore be considered a failure. However, it was a stepping stone toward
the correct path because, in working with the oval and the area law, Kepler had
to compute areas of its sectors — something he could not do — so he simplified his
laborious calculations by assuming that it was an ellipse! It was not the ellipse
that corresponds to the actual orbit — in particular the Sun was not at a focus —
but it was an ellipse nevertheless. Thus, at this stage Kepler was using two
‘approximations’ to simplify his calculations — the area law and an elliptical
orbit — both of which would turn out not to be approximations at all.”

Kepler had reached this point in his war with Mars by mid 1603, and he
decided to set Mars aside for a while to concentrate on his researches into
optics, including a study of atmospheric refraction.” He resumed battle in
summer 1604, and sometime in early 1605 he had a flash of inspiration. He
noticed that at quadrature (Q in Figure 6.10) the distance of Mars from the
Sun was precisely half the distance between aphelion and perihelion, |A P|. He
hypothesized that the distance r would vary with 6 according to the equivalent
of the formula r = a(1 4 e cos ), for which he devised a complicated and
unconvincing pseudo-magnetic physical theory, and referred to the resulting

" This was first derived as recently as 1962 by Kuno Fladt (Whiteside (1974)). Aiton (1978) has
pointed out that since at this time Kepler believed the area law to be an approximation to the
true distance law, this polar equation should be thought of only as an approximation to the
actual oval Kepler had in mind.

" Strictly speaking, the area law and elliptical orbits are approximations due to the perturbing
effects of the other planets.

" The Astronomiae pars optica (The Optical Part of Astronomy) was published in 1604. It
contained influential work on pinhole images as well as the first essentially correct account of
human vision.
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Fig. 6.10. Kepler’s pufty-cheek orbit.
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Fig. 6.11. The elliptical orbit.

orbit as the ‘puffy-cheek’ path because it was broader near aphelion than near
perihelion.
From the cosine rule on triangle O SM and

r@r —a)
rcosa =ae+rycosf =ae+ ——,
ae

we can derive the expansion for 7 in powers of e:

r 2 2 3

o= 14 ecosa —e“sin“a + O(e”),
exactly as for an ellipse. Kepler’s calculations confirmed that this new orbit
reproduced planetary distances accurately and he could have carried his cal-
culations through for the ‘puffy-cheek’ path and, hence, find that the anomaly
a was also predicted accurately by this orbit together with the area law, but,
instead he went on, realizing that with a minor modification he could make his
‘puffy-cheek’ a perfect ellipse. Kepler kept the equation r = a(1 + e cos 6) but,
instead of making 6 the angle between O M and O A, he took it to be the angle
between OM' and O A, where M’ is the point on the circle having diameter
P A (known as the auxiliary circle) which is also on the perpendicular to P A
through M (see Figure 6.11). This angle is known as the ‘eccentric anomaly’.
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It is clear that [NM'| = asin® and a simple application of Pythagoras’
theorem yields

INM| = [r* — a*(e + cos0)*]1"? = asinf+v/1 — €2 = INM'|V/1 — €2,

a geometrical property that Kepler knew implied that AM P was an ellipse.
It is straightforward to derive the standard polar equation for an ellipse from
Kepler’s equations.77 Sincer cosa —ae = acosf andacost = (r —a)/e, we
immediately have
a(l —e?)
r=—.

1 —ecosu

Although Kepler had no good empirical evidence for throwing away the
‘puffy-cheek’ orbit in preference to the ellipse, he was convinced of the truth
of the elliptical orbit.” Moreover, although Kepler had only derived this new
orbital shape for Mars, he assumed simply that since the cause of the motion
was the same for all the planets, all the planets must behave in the same way.
Nowadays, Kepler’s first law of planetary motion usually is stated as:

Planets move on elliptical orbits with the sun at one focus

but it is worth noting that nowhere in the main body of the New Astronomy is
the word ‘focus’ mentioned, and it was only later in his Epitome of Copernican
Astronomy that Kepler emphasized this aspect of planetary orbits. Kepler’s
physical mechanism by which the planets were forced to move in such a fashion
was incorrect, but the idea that the study of celestial motions should be based
on physical causes influenced all those who followed in his footsteps.79
Kepler derived a very elegant relation that connects the mean anomaly (i.e.
the time 7) to the eccentric anomaly, 6. It is obvious from Figure 6.11 that the
areas of the sectors SM’A and O M’ A differ by the area of the triangle SM’ O,
which is (aze/2) sin @ and, since O M’ A is a sector of a circle, its area is a29/2.
Now, M rotates around its elliptical orbit so that the area of the sector SM A is
proportional to the time ¢ and, since [N M'|/|N M| is a constant ratio, it follows

" First written down in 1664 by Nicholas Mercator.

The justification that Kepler provided for the ellipse was, to say the least, misleading (Donahue
(1988)).

" Most of Kepler’s contemporaries remained unconvinced of the value of turning astronomy into
a physical science. Even Michael Mastlin had his doubts. In a letter to Kepler written in 1616,
he wrote: ‘Concerning the motion of the moon you write you have traced all the inequalities to
physical causes; I do not quite understand this. I think rather that here one should leave physical
causes out of account, and should explain astronomical matters only according to astronomical
method with the aid of astronomical, not physical, causes and hypotheses’ (Holton (1988)).
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that the area of the sector SM’A is also proportional to the time. When ¢t = 7,
the area of SM’A is simply that of a semicircle, wa?/2, and so the area of the
sector SM'A at an arbitrary value of ¢ is a’¢/2. We, thus, have what is now
known as ‘Kepler’s equation’:

t =6+ esinf. (6.6)

It was the constant ratio |[N M|/|N M’| that enabled the area law to be applied
easily and made the elliptical orbit so attractive. However, in order to determine
0 for a given ¢ from Eqn (6.6), Kepler had to use a tedious iterative procedure and
challenged mathematicians to find a better method. Many tried, and Kepler’s
method was improved upon, but the procedures remained difficult and time-
consuming.80

Throughout the New Astronomy, Kepler made extensive use of the area law,
but initially he believed that it was only an approximation to the physically
correct but mathematically inconvenient distance law. By the time he wrote the
Epitome of Copernican Astronomy 10 years later, he believed in the truth of the
area law and had changed the distance law to the equivalent of the statement
that it was the component of the velocity perpendicular to the Sun—planet line
that varied inversely with the distance from the Sun.” In other words,

do c

r—=-,
e r

which is precisely the same as the area law, Eqn (6.3). Not only does this revised

form of the distance law fit in with the area law, it also fits in very well with

Kepler’s physical conception of magnetic filaments rotating in circles around

% Kepler’s iterative procedure was as follows. Guess an approximate solution 6 for 6. Then

Oy +esinfy =t + ¢ for some €. Let 0 = 6y — ¢ =t — esinfy. Then

6 +esinf; =1 + 0(e2) + O(ee). Thus, provided both e and ¢ are small, 8; should be a better
approximation. This procedure can then be repeated. Despite the fact that satisfactory methods
of solution have been known for a long time, Kepler’s equation has continued to be a source of
interest right up until the present. For details, see, for example, Battin (1987), Chapter 5, and
Colwell (1993), the latter containing an extensive list of references. Interestingly, Kepler was
not the first to use this iterative procedure for the solution of the equation t = 6 + e sinf. An
equation of exactly the same form was derived by Islamic astronomers to aid the reduction of
observations to the center of the Earth so as to account for parallax. Habash al-Hasib, a
contemporary of al-Khwarizmi (ninth century), developed an iterative solution procedure that
was equivalent to Kepler’s (see Kennedy (1956a)). In the nineteenth century, attempts to find a
series solution to Eqn (6.6) led Bessel to study the functions that now bear his name (see
Watson (1944), Chapter 1). In fact, the solution of Eqn (6.6) can be written as

0=t+ Zi‘;, 2(—=1Y*n~1J,(ne) sinnt, where J,, is a Bessel function of the first kind.
Kepler’s treatment of the area law in the Epitome of Copernican Astronomy is described in
Davis (2003).

81
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the Sun, the influence of which diminishes in proportion to the distance from
the Sun. Also, from Kepler’s equation,

dr - 9 r
— = ecosf = —
de a
and, hence,
do
a— = —,
dr r

so saying that M moves around an ellipse subject to the area law is equiva-
lent to saying that the speed with which M’ moves around the auxiliary circle
varies inversely with the Sun—planet distance. Although the ideas developed in
Kepler’s mind over a number of years, it is stated nearly always that Kepler’s
second law,

Planets move so that the line connecting them to the sun sweeps out equal areas in
equal times

was given in the New Astronomy.

Kepler’s first two laws of planetary motion truly were revolutionary. With
them he overthrew the fundamental premise of all mathematical astronomy that
preceded him, i.e. that celestial motions were built up from uniform circular
motions.” The fact that Kepler discovered these laws is made all the more
remarkable by the fact that he did so from observational data alone and without
the help of Newtonian dynamics. Crucial to his discovery was his insistence
that the motion of the planets was a physical process, with the Sun playing a
predominant role. Although Kepler’s physics was erroneous, it did enable him
to ask some of the right questions and to look in the right place for the answers.

The work for the New Astronomy was pretty much complete by the end
of 1605, but problems arose over its publication. Apart from some financial
difficulties there was the problem that, since the work was based on Tycho’s
observational data, Tycho’s heirs insisted on the right to censor it, and they
were not happy that the work was based on a heliocentric universe. Eventually,
Kepler managed to overcome these difficulties and the book appeared in 1609 —
and was almost totally ignored! The reception of Kepler’s work and its gradual
assimilation into the mainstream of astronomical thought83 will be discussed
in the next chapter. It should be noted, however, that the New Astronomy was

* There was still a very deep sense in which Kepler believed in the perfection of circles and
circularity, feelings that manifest themselves in his later work, Harmony of the World (see
Brackenridge (1982)). Many other influential astronomers remained obsessed with circularity,

. notably Galileo.

Described in detail in Russell (1964).
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extremely difficult reading. While Kepler’s descriptions of his dead ends and
false leads may be fascinating to the modern reader interested in the question
of how Kepler arrived at his conclusions, they would have been lengthy and
unnecessary diversions at the time. On top of this, Kepler’s mathematics was
often clumsy and involved concepts with which most of his contemporaries
were unfamiliar. Ellipses were little studied and their geometrical properties
largely unknown, and until the development of the calculus by Newton and
Leibniz, techniques for dealing with motion around elliptical orbits subject to
an area law were hopelessly inadequate.

The Harmony of the World and the third law

The first 40 years of Kepler’s life were by no means plain sailing, but he
managed to overcome those difficulties that presented themselves and, by 1611,
had established his reputation as one of the foremost astronomers of his day.
Then tragedy struck. His wife became seriously ill toward the end of 1610, and
died in July 1611. His three children all contracted smallpox in January 1611
and, although the youngest and eldest survived, his 6-year-old son Frederick
died. On top of this, the political situation in Prague forced Kepler’s patron, the
Emperor Rudolph, to abdicate in May 1611 and he died the following year.

The patronage of the emperor, who was much more interested in artistic
and scientific endeavour than in religious differences, was the main reason
that Kepler, a Protestant, had managed to live without persecution in early
seventeenth-century Prague. With Rudolph’s death, Kepler had to leave Prague,
and in 1612 he took up a new position as District Mathematician in Linz, a
job that basically was created for him by influential people who wanted Kepler
working in their city. This was rather a comedown for the Imperial Mathe-
matician, but he at least received a regular salary and had the time to begin the
laborious calculations of the orbital parameters required to fit the celestial bod-
ies other than Mars to their elliptical orbits around the Sun. These calculations
formed the basis of the Rudolphine Tables, which were published in 1627.

In 1613, as well as remarrying, Kepler became interested in the problem of
determining the volumes of wine barrels of different-shapes. He realized that
the ideas he had developed when determining areas of curved regions as part of
his war with Mars could be brought to bear on this subject, and this led to the
publication of his New Solid Geometry of Wine Barrels in 1615." Kepler was

84 . . . L , . s .
Nova steriometria doliorum vinariorum. Kepler’s method involved dividing volumes into
infinitely many infinitesimal regions and represents a primitive integral calculus. It was
expanded systematically by Bonaventura Cavalieri.
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thus not only working at the forefront of astronomical research, but also paving
the way for those who would later create the new mathematical methods of the
eighteenth century.

Kepler also planned to produce a textbook that would combine the Coperni-
can heliocentric theory with his own discoveries into a comprehensive whole.
The first part of this work, the Epitome of Copernican Astronomy, went to press
in 1617, but the book (described in the next chapter) was not completed until
1621. Kepler’s life, never simple, took another downward turn in 1617 when his
mother was accused of witchcraft and threatened with torture and execution.
He expended considerable energy in fighting on her behalf through the complex
legal process that ensued, and Frau Kepler eventually was cleared, though she
died soon afterwards. On top of all this, three of Kepler’s children died within
a 6-month period in 1617-18.

In spite of the tragedies that befell him, Kepler managed to turn his attention
back to the project he had abandoned in 1599, the sequel to the Secret of
the Universe, which was to provide a comprehensive study of harmony as it
occurred in geometry, arithmetic, music, astrology, and astronomy. It is tempting
to think that the study of harmony rather than the computation of astronomical
tables was just what Kepler needed at this trying time. To complete his theories
of harmony in astronomy, he wanted to know the relationship between the
speeds of the planets and their distances from the Sun. This he discovered on
15 May 1618 and a few days later he wrote:

Now, because eighteen months ago the first dawn, three months ago the broad
daylight, but a very few days ago the full sun of a most remarkable spectacle has
risen, nothing holds me back. Indeed, I give myself up to a sacred frenzy.85

True to his word, he completed his work quickly — the Harmony of the World
was finished by 27 May!, though the printing of the book took more than a
year.86 It is believed widely that of all Kepler’s works, this is the one that gave
him the most pleasure.

The Harmony of the World is a fascinating book, with mathematical dis-
cussions on such things as the constructibility (using straight edge and com-
pass alone) of the regular polygons, tessellations of the plane and semi-regular

:5 Quoted from Caspar (1993), p. 267.
Some modifications needed in the light of his new discovery were incorporated during 1619
(Field (1988), p. 143). The first complete English translation of the Harmonice mundi is that of
Kepler (1997) which contains a lengthy introduction and extensive notes. Interestingly, Kepler
dedicated the work to King James I of England, whom he believed had it in his power to
reunify Protestants and Catholics.
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polyhedra or Archimedean solids” (Kepler gave the first-known proof that
there are exactly thirteen of them). Kepler also discussed the relative merits
of long-established geometrical methods and newly developed algebraic tech-
niques for the solution of various problems. For example, Kepler believed that
regular polygons that were not constructible using a ruler and compass were
‘unknowable’, and played no role in God’s design of the Universe." When Jost
Biirgi showed him that an algebraic relation could be established between the
side of a regular heptagon and the radius of its circumscribing circle, Kepler
insisted that this was of no use as it did not provide a geometrical construc-
tion.

The fifth and final book of the Harmony of the World attempts to explain
the harmonic relationships that govern astronomical phenomena and contains
Kepler’s statement of his third law of planetary motion. Kepler had been at-
tracted by the Pythagorean idea of the harmony of the spheres from his Secret of
the Universe days. He believed that were the heavens filled with air, the planets
would produce audible sounds, but that in the absence of air it was an intel-
lectual harmony that existed. In his early work he had assigned speeds to the
planets such that the ratios of these speeds resulted in musical consonances. He
chose the relative speeds of Saturn, Jupiter, Mars, Earth, Venus, and Mercury
as 3, 4, 8, 10, 12 and 16, respectively, so that, for example, Mars and Jupiter
produced a ratio of 2, which corresponds to an octave, whereas Venus and Mars
produce a ratio of 3 : 2, a fifth. From these speeds, together with the known
orbital periods, Kepler could calculate the relative distances of the planets from
the Sun, and he obtained a better agreement with Copernican theory than he
had from his polyhedral hypothesis.

However, calculations based on Tycho’s accurate observations showed
Kepler that this theory based on simple arithmetic ratios was not correct, and
instead he sought musical harmony in relations between constructible polygons.
He asked then in what way the design of the Universe reflected this complex

¥ An Archimedean solid is a convex polyhedron which has faces that are all regular polygons (of
at least two different types) and the vertices of which are all identical. No work of Archimedes
describing these solids has survived, but Pappus of Alexandria (AD fourth century) credits him
with their discovery (Boyer (1989), Section 8.12).

In Kepler’s time, the only known constructible regular polygons were those with three, four
and five sides and those derivable from them, i.e. those with the number of sides of 2" 3™ 5!
with n a non-negative integer and m, [ = 0 or 1. In fact, Kepler includes a proof in Book I of
the Harmony of the World that regular polygons with a prime number of sides greater than 5
are not constructible, but his proof is flawed. In 1796, when only 19, Gauss proved that a
regular polygon with a prime number of sides p is constructible if, and only if, p — l isa
power of 2. Gauss’ result shows that it is possible to construct regular polygons with 3, 5, 17,
257 and 65 537 sides. It is not known if there are any more such primes p.

88
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Table 6.2. The harmonies implied by the daily motions of the
planets near aphelion and perihelion.
(A diesis is the difference between a whole minor tone and a
semitone, i.e. 24/25 = 9/10 =~ 15/16.)

Apparent daily motion Musical harmony
Mercury Aphelion 164 5:12
Perihelion 384/ Octave and minor third
Venus Aphelion 94’ 50” 24:25
Perihelion 97 37" Diesis
Earth Aphelion 57 3" 15:16
Perihelion 61’ 18" Semitone
Mars Aphelion 26’ 14" 2:3
Perihelion 38 17 Fifth
Jupiter Aphelion 4’ 30" 5:6
Perihelion 530" Minor third
Saturn Aphelion 1" 46" 4:5
Perihelion 215" Major third

musical harmony and found his answer in the apparent daily motions of the
planets as viewed from the Sun:

... we should look not how high any particular planet is from the sun, nor what
space it traverses in a single day—for that is rational and astronomical, not
instinctive—but how large an angle the daily motion of each planet subtends at the
actual body of the sun, or how large an arc on one common circle drawn about the
sun, such as the ecliptic, it seems to complete on any particular day.89

Elliptical orbits with the area law imply that planets move faster near perihelion
than near aphelion, and Kepler computed the daily motion in longitude of each
planet at these points. The ratios of these motions he found to be approximated
closely by harmonic ratios (see Table 6.2). He also went on to deduce similar
harmonies between pairs of planets. These harmonic ratios were then tempered:
tuned so that the planets would form a six-part harmony. For example, Saturn’s
ratio of 4 : 5 became 64 : 81 when ‘tuned’.

Kepler thus had two different types of harmony in his celestial scheme. On
the one hand he had the planetary spacings (which he believed still were guided
by the regular polyhedra), and on the other he had the harmonies implied by the
maximum and minimum angular speeds of the planets. He needed a harmonic
relationship between the angular speeds of the planets and their distances from

¥ KepLER Harmony of the World, Book V, Chapter IV.
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the Sun in order to complete his theory, and he discovered this relationship in
May 1618. Kepler’s statement of his third law is equivalent to

The square of the period of a planet is proportional to the cube of its mean
distance from the Sun.

The different aspects of the planetary motions then can all be tied together. At
aphelion and perihelion, the area law is equivalent to Kepler’s original distance
law (speed varies inversely with distance) and so the ratio of angular speeds at
these points satisfies

2,.2
wa/wp =T1,/T4

where r, and r, are the perihelion and aphelion distances, respectively. Inserting
the tempered values for w,/wp from his harmonic theory, Kepler could obtain
the ratio r,/r,, from which the planet’s eccentricity is determined easily:

Fa—Tp L —rp/ra
Fa+1p 1+rp/ra'

Next, Kepler calculates the mean angular speed of each planet; not the arith-
metic mean of the extreme motions, A = (w, + @;)/2, and not the geometric
mean G = \/w,w,, but the quantity o = G — (A — G)/2 instead.” Tt is to this
mean motion that Kepler then applies his newly discovered law to deduce the
mean distance, and then the maximum and minimum distances are determined
because the eccentricity is known. Kepler compared the results for perihelion
and aphelion distances found by this elaborate procedure with those determined
from Tycho’s observational data, and the agreement is quite impressive.gl

e =

90 . . . . . .
Though Kepler does not derive this curious quantity, a simple analysis shows that he was
calculating the angular speed w that satisfies the relations w/w), = rg/r2 and w/w, = rf/rz,
where r = (ry + rp)/2 is the mean distance. If we add and multiply these relations together we
can derive

wA _ Tpla
G2 72
and
®  Tpha
G 2’

and if we then combine these relations, we obtain w = 2G2/(A + G). On the assumption that
A and G are close together, we have

A-G\
w=2G2(20+A—G)*1:G<1+T> ~G—3(A-G).

" See Brackenridge (1982) for an analysis.
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Table 6.3. The accuracy of Kepler’s third law based on Kepler’s data.

Period T (years) Relative distance a T? a’
Mercury 0.242 0.388 0.0584 0.0580
Venus 0.616 0.724 0.3795 0.3795
Earth 1.000 1.000 1.000 1.000
Mars 1.881 1.524 3.540 3.538
Jupiter 11.86 5.200 140.61 140.73
Saturn 29.33 9.510 860.08 867.69

The third law brought the whole of Copernican planetary theory together.
While Copernicus had improved on Ptolemy in that the relative planetary dis-
tances could be determined from his theory by observation, there was no reason
in Copernican theory for these distances being what they are. As far as Kepler
was concerned, his third law provided that final link, and at the same time fur-
ther justified his belief that the nature of the Universe could be described by
simple mathematical relationships. The third, or harmonic, law was not given
much emphasis in the Harmony of the World; in particular, Kepler did not pub-
lish a table of values showing the accuracy with which the third law relates the
periods and distances of the planets. However, he must have performed these
computations, and results are shown in Table 6.3.”

Kepler later (in the Epitome of Copernican Astronomy) developed a physical
theory to ‘explain’ the third law. According to Kepler, there were four factors
that influenced the period of a planet. First, there was the obvious fact that the
further away a planet was from the Sun, the longer its orbital path, and this
length is proportional to the radius of the orbit. Second, the force emanating
from the Sun which pushed the planet around its orbit decayed in proportion to
the distance. If all the planets were identical, this would imply that the period
was proportional to the square of the radius. In order then to fit in with his
newly discovered law, Kepler concluded that the planets must be different. In
Kepler’s physics, each planet resisted the force of the Sun, and this resistance
was proportional to the quantity of matter in the planet; but to counter this,
a larger planet would be able to absorb more of the solar virtue, and Kepler
assumed that this would be proportional to its volume. Taken together, these last
two factors cause an increase in the orbital period of a planet in proportion to its
density. Kepler thus assumed that the volumes of the planets were proportional
to their distances from the Sun and the quantity of matter they contained to the

” The numbers here are taken from Gingerich (1989).
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square root of this distance, so that planetary densities varied inversely as the
square root of the orbital radius, and in this ad hoc way he could reproduce his
third law, T2 o a3, and absorb it into his physical astronomy.

There is a fundamental difference between Kepler’s third law in modern as-
tronomy and the law as appreciated by Kepler himself. In a Newtonian frame-
work, the third law is true for any planet regardless of volume or mass, but
for Kepler the law was only true for planets with a very precise relationship
between density and orbital radius. In many ways the law as stated by Kepler is
not a physical law at all, but simply a reflection of the design of the Universe.
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Galileo, the telescope, and Keplerian astronomy

Galileo

Galileo Galilei, one of the founders of modern science, enrolled at the Uni-
versity of Pisa in 1581 as a student of medicine and philosophy but soon was
drawn toward the study of mathematics, including mechanics and Ptolemaic
astronomy.] In 1589, he became a professor of mathematics at Pisa with a keen
interest in the study of motion and a desire to replace qualitative and, to him,
implausible Aristotelian ideas, with laws that were both quantitative and more
credible. He devoted much of the early part of his life to the study of dynamics
or, more accurately, to the creation of a new mathematical science of moving
bodies, and by 1604 had deduced that the distance travelled by a freely falling
object was proportional to the square of the time taken.’

During the 1590s, Galileo developed an absorbing interest in the Copernican
system and, although it made great physical sense to him, he (unlike Kepler)
kept most of his ideas on the subject to himself.” Sometime around 1595 he
constructed an argument for the cause of tides based on the daily rotation of
the Earth, but he did not put it into print until 1616." He argued that, since the

There is a wealth of literature concerning Galileo. A good starting point is Machamer (1998).
See Dugas (1988). That Galileo was not in total command of the dynamics of free fall at this
time is clear from the fact that he also believed that the speed was proportional to the distance
travelled rather than the time.

Galileo’s progression from rejection to acceptance of Copernicanism is described in Drake
(1987). During his early years as a teacher, Galileo composed a Treatise on the Sphere, which
basically followed Sacrobosco’s thirteenth-century work. He was still teaching this elementary
Ptolemaic material after he had converted to heliocentrism (see Drake (1978)).

The Discourse on the Tides was written in the form of a letter to Cardinal Orsini (translated in
Finocchiaro 1989). Prior to Galileo, most scholars (e.g. Kepler) attributed tidal motion correctly
to the influence of the Moon on the oceans, based on the easily observed fact that certain tidal
phenomena are related to the Moon’s phases. The first detailed treatment of the relationship
between the Moon and the tides is due to Posidonius (first century BC (see Darwin (1962),
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Fig. 7.1. Galileo’s theory of the tides.

motion of a point on the surface of the Earth is made up of two components —
one due to the daily rotation of the Earth and the other to the annual motion
of the Earth around the Sun — the linear velocity of the point P; in Figure 7.1
(where it is midnight) is the sum of the linear velocity of the Earth in its orbit
around the Sun and the linear velocity due to the diurnal rotation. However, at P,
(where it is noon) the linear velocity is the difference between these quantities.
Galileo put it like this:

Thus I believe that it is clear how, though each part of the earth’s surface moves
with two very uniform motions, nevertheless within a period of twenty-four hours it
moves sometimes very fast, sometimes slowly, and twice at intermediate speeds;
and this change results from the combination of these two uniform motions, diurnal
and annual.’

This constant speeding-up and slowing-down of a point on the Earth’s surface
caused the oceans to slosh back and forth, resulting in the tides. This theory
is flawed,” but it is clear from his work on the subject that he recognized
the essentially localized nature of tidal phenomena. There is a periodic tide-
generating force (which Galileo got wrong) but it is the geometry of the ocean
basin that determines the actual behaviour of the fluid within it.

When Kepler sent him a copy of the Secret of the Universe in 1597, Galileo
thanked him and told him that he had been convinced of the Copernican hy-
pothesis for some time but added that he was not prepared to publish anything
to that effect:

Many years ago I came to agree with Copernicus, and from this position the causes
of many natural effects have been found by me which doubtless cannot be

pp- 81-5). Galileo’s theory is discussed at length in Palmieri (1998). The influence of
Copernicanism on Galileo’s early investigations in dynamics is discussed in Naylor (2003).

% Quoted from Finocchiaro (1989).
The argument confuses two different frames of reference. The motion of the Earth is
considered-relative to the Sun, but it is the motion of the water relative to the Earth that Galileo
was trying to explain.
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explained by the ordinary supposition. I wrote down many reasons and arguments,
and also refutations of opposite arguments, which, however, I did not venture until
now to divulge, deterred by the fate of Copernicus himself, our master, who,
although having won immortal fame with some few, to countless others appears . . .
as an object of derision and contumely. Truly, I would venture to publish my views
if more like you existed; since this is not so, I will abstain.”

Kepler encouraged Galileo to be less cautious. In his reply he wrote:

Be confident, Galilei, and proceed! If I am right, only a few of the chief
mathematicians of Europe will keep aloof from us; such is the power of truth.®

In 1604, Galileo lectured on the supernova of that year and showed that the
absence of diurnal parallax indicated that the new star occupied the region of
the heavens above the Moon, supposedly unchanging according to Aristotle.
By 1609, Galileo was what might be described as a cautious Copernican; in
private he was prepared to advocate the motion of the Earth, but in public,
for fear of ridicule, he was not. One of Galileo’s reasons for not recoiling
from the concept of a moving Earth was that his researches into the nature
of motion had convinced him that Aristotle’s theory was false. For exam-
ple, Aristotle said that bodies fall with speeds proportional to their weights,
but Galileo’s experiments revealed that the speed of fall was independent of
weight. More fundamental was Galileo’s realization that motion could persist
without any applied force. He did not quite formulate the principle of iner-
tia that Newton arrived at a century or so later, because in Galileo’s mind it
was circular motion that was the natural state; thus, no force was necessary
for the Earth to spin continually and, similarly, no force was required for the
planets to orbit the Sun. This circular inertia was consistent with the ancient
Pythagorean doctrine of uniform circular motion, but Galileo also applied his
principle to terrestrial physics. In Galileo’s famous work on projectiles, he as-
sumed that the horizontal part of the motion (which was, in the absence of
air resistance, not subject to change) actually was part of a circular motion,
the radius of which was that of the Earth, and thus it was only approximately
rectilinear.

While Galileo was Professor of Mathematics at Padua — perhaps the leading
Italian university of the time — he learned of an invention that had the effect of
making objects appear to be closer than they really were. Galileo was interested,
and he had soon (by autumn 1609) built himself a telescopeg with a magnifica-
tion factor of about 8. He did not (as is sometimes said) invent the telescope,

; Quoted from Pannekoek (1961). 8 Quoted from Pannekoek (1961).
Galileo’s preferred name was a perspicillum, and Kepler approved, so it is perhaps surprising
that this did not last; for the explanation, see Rosen (1947).
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and the original instruments he used probably were rather less effective than a
modern pair of binoculars, but he was the first person to use such a device to
make a systematic survey of the the heavens, with devastating consequences
for man’s view of the Universe."

Not unnaturally, Galileo’s first target was the Moon,11 and when he looked at
it he found it was not perfectly smooth and spherical as a heavenly body should
be, according to Aristotle, but instead had shadows that moved as the angle of
the Sun varied. He noticed that the border between the light and dark parts of
the Moon was not perfectly straight. Near this border, in the dark portion, he
observed light patches that grew larger and gradually merged with the light part
of the surface as the Moon got fuller. He concluded that these were the tops of
mountain ranges. Thus, the Moon was seen to be like the Earth in many ways,
and not some pure crystalline object. He explained also the appearance of a
slight illumination in the dark part of a thin crescent moon (sometimes referred
to as ‘the old moon in the new moon’s lap’) as arising from ‘Earthshine’, the
reflection of sunlight onto the Moon by the Earth.” This offended Aristotelians
for whom the Earth could not shine like a planet. Galileo observed the Milky
Way through his telescope and found that it was made up of many, many faint
stars. In fact, he soon realized that wherever he looked in the heavens, he could
see more stars with his telescope than without it.

He also observed that, through a telescope, stars and planets looked
different — the planets looked like discs, but the stars remained as twinkling
points of light. He realized that both planets and stars were much smaller than
naked-eye observations suggested; indeed, the telescope allowed the first accu-
rate determination of the sizes of planets.13 This removed one of the objections
that Tycho Brahe had proposed concerning the vast distance to the fixed stars
that was implied in On the Revolutions. Based on naked-eye observations, Tycho
had calculated the sizes of stars that would be implied by this great distance,
and found that they would have to have diameters that were of the same order
of magnitude as the radius of the orbit of the Earth, something Tycho thought
was ridiculous. Telescopic observations showed, however, that the apparent

Another person to look at the heavens through a telescope around this time, maybe even earlier
than Galileo, was Thomas Harriot (see, for example, Montgomery (1999), pp. 106-13).
Harriot, who was one of the leading mathematicians in Elizabethan England, was responsible
for the first recorded astronomical observation in North America, made during the attempted
colonization of Virginia in 1585 (Yeomans (1977)).

A century before Galileo, Leonardo da Vinci had written: ‘Construct glasses to see the moon
magnified” (Montgomery (1999), p. 97).

Galileo was not the first to put forward this explanation (Ashbrook (1984), p. 198).

For example, the traditional value for the angular diameter of Venus at apogee was about 3/,

but Galileo determined the much more accurate value of %/ (see van Helden (1989)).
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diameters of the fixed stars were much smaller than had been thought previ-
ously. On the other hand, the advent of the telescope did not result in anybody
being able to measure any stellar parallax, and so Copernicans had to keep
revising upwards the distance to the fixed stars.

By early 1610, Galileo had built a telescope that could magnify about 20
times, and he turned his attention to Jupiter and saw four small star-like objects
close to the planet. Observations over the next few nights showed that while
these ‘stars’ moved with respect to each other and to Jupiter, they participated in
Jupiter’s motion with respect to the fixed stars, and he realized that they must be
satellites of the planet. This discovery further undermined Aristotelianism, as it
implied the existence of another centre of rotation. It also aided the Copernican
cause because the Earth ceased to be the only planet with a satellite, thus
lessening the force of any argument that was based on the special nature of the
Earth. While Galileo’s discoveries strengthened his Copernican convictions, he
still chose, for the time being, not to publicize his beliefs.

He did, however, publish the results of his telescopic observations and he
did this very quickly to ensure priority — within 2 months he had written up
his findings in The Starry Messenger.]4 Since he had long wanted to secure
an official position in the employ of the Medici family, he decided to call the
new objects the Medicean Stars. His efforts were rewarded, and later in 1610
he moved to Florence to become Philosopher and Chief Mathematician to the
Medici court.

Galileo’s discoveries concerning Jupiter encouraged him him to point his
telescope at other planets to see if they, too, had satellites. Later in 1610 he
observed Saturn, but he was baffled by its curious shape:

I have observed that Saturn is not a single star but three together, which always
touch each other. They do not move in the least among themselves and have the
following shape 00o, the middle being much larger than the lateral ones."”

" Sidereus nuncius, translated in Drake (1957). In fact, in 1614 Simon Mayr (Marius in
Latinized form) published his Mundus Jovialis (World of Jupiter) in which he claimed to have
observed the four ‘stars’ near Jupiter during December 1609 and to have reached the same
conclusion as Galileo as to what they were. Since Mayr, who was a believer in a Tychonic
arrangement of the planets, did not publish his observations there and then, it is generally
Galileo who is given the credit for discovering the first four moons of Jupiter; a discussion of
this controversy over precedence is given in Johnson (1931). In Mayr’s work he suggested the
names for these satellites that are in use today (Io, Europa, Ganymede, and Callisto) based on
an idea of Kepler’s.

Quoted from Shea (1998). It was Christiaan Huygens in the late 1650s who first explained
Saturn’s shape as being due to a ring encircling the planet. Various theories were proposed
during the first half of the seventeenth century, and these are described in van Helden (1974a,
1974b). Huygens was also the first to discover (in 1655) a satellite of Saturn (now called Titan)
and he conjectured, on numerical grounds, that no more would be found: the number of known
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Sun

(a) 94°
Earth Earth

Fig. 7.2. The phases of Venus (half-shaded circles) in the (a) Ptolemaic, and
(b) Copernican systems.

Galileo realized that telescopic observations of Venus might enable him to
determine whether it orbits around the Earth below the Sun — as in the Ptolemaic
system — or around the Sun — as in the Copernican and Tychonic systems. In
Ptolemy’s universe, Venus should never be observed as a full disc, since it was
always closer to the Earth than the Sun and always within 4=47° of it; but if it
orbited the Sun, then it should display a full range of phases, just like the Moon.
Figure 7.2(a) shows Venus at four points in its passage around its Ptolemaic
epicycle and, since more than half of the dark side of the planet always is visible
from the Earth, the planet will be observed only in crescent phases. On the other
hand, in a heliocentric universe (see Figure 7.2(b)) all possible phases can be
observed. Galileo’s observations showed that Venus did display the complete
range of phases from crescent to full and back again and, hence, the traditional
Ptolemaic view was false.'’

Galileo communicated these and other findings to an excited Kepler, and the
two engaged in a lively correspondence. Observations of sunspots revealed that
the Sun was rotating, and Kepler naturally was thrilled that what he had supposed
in his physical theory had been shown to be true. Galileo’s discoveries were
instrumental in maintaining Kepler’s enthusiasm through the difficult times he

planets and satellites was then 12, which is 2 x 6 and 6 is the first perfect number. However, in
1671, G. D. Cassini, one of Europe’s foremost observational astronomers, discovered another
moon of Saturn (and ultimately three more) and this kind of speculation began to lose its
appeal. Alexander (1962) describes in detail the history of Saturnian observations from ancient
» times to 1960.
The same argument — which in the context of its time was not quite as conclusive as it might
appear (see Ariew (1987)) — applies to Mercury, though the phases are much harder to observe.
Kepler published details of Galileo’s findings concerning the phases of Venus in his Dioptrice
of 1611. In this mathematical work, Kepler developed his earlier work on optics and described
the laws that govern the passage of light through lenses and also the design of a telescope that
was superior to Galileo’s and became the standard in astronomy from the 1630s onwards.
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was experiencing and, on receiving a copy of The Starry Messenger, Kepler
wrote quickly his Conversation with the Starry Messenger " in which he, unlike
many other contemporaries, endorsed Galileo’s findings and looked ahead to
what other discoveries might lie in store for astronomers. Kepler pointed out
that many of Galileo’s conclusions were not new, but admitted that the idea
of viewing the heavens through a telescope had not occurred to him; he had
assumed that the thick blue air would have blocked out any details of the
heavenly bodies. Now that Galileo had shown the space between the planets to
be filled with a very thin substance, astronomers were free to speculate about
what else might be observed. For example, Kepler hypothesized that Jupiter,
like the Earth, must rotate so as to push its satellites around in their orbits and,
sure enough, this was later observed to be the case, the period of rotation being
established by G. D. Cassini in 1664 as 9h 56 min." From this point on, very
few astronomers believed in the Ptolemaic structure of the Universe.

Perhaps the last serious defender of Ptolemy was Christoph Clavius, an early
member of the Order of Jesuits and the founder of Jesuit mathematical and as-
tronomical studies.” Clavius played a leading role in the reform of the calendar
in 1582, and his opinions were extremely influential among those philosophers
and theologians who later would criticize Galileo, most of whom would have
learned their astronomy from Clavius’ popular textbook, Commentary on the
‘Sphere’ of Sacrobosco (1570). This work was more than simply a descrip-
tion of Sacrobosco’s little book. It brought together Aristotle’s cosmology and
Ptolemy’s mathematical astronomy, including Peurbach’s detailed physical in-
terpretations. Clavius was well aware that there were many rival cosmologies to
the one in which he believed. He was particularly critical of the sixteenth-century
revival in theories based on homocentric spheres (e.g. those of Fracastoro and
Amico), which seems to suggest that these cosmologies had a sizeable follow-
ing. He also argued against Copernicus, using the usual arguments against a
moving Earth, but clearly he admired the Polish astronomer’s mathematical
astronomy because he decided to incorporate the Copernican theory of preces-
sion into his geocentric astronomy in the 1593 edition of his textbook. This

7" A translation of which can be found in Rosen (1965).
See Hockey (1999) for details of early telescopic observations of Jupiter. It is perhaps also
worth mentioning that not all telescopic discoveries were as illuminating. Cassini himself
observed a satellite of Venus in 1686 and the same non-existent object was observed
subsequently by no fewer than fifteen different observers during the seventeenth and
eighteenth centuries (Ashbrook (1984), pp. 281-3). The arrival of the telescope did not signal
the immediate end for naked-eye astronomy since, until the incorporation of cross hairs in the
1660s, it was not easy to make accurate positional observations with a telescope. The last great

. practitioner of naked-eye astronomy was Johannes Hevelius (Montgomery (1999), p. 174).
The astronomy of Clavius is studied in detail in Lattis (1994).
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also was done by the Italian astronomer Giovanni Magini who, in his New The-
ories of the Celestial Orbs Conforming to the Observations of N. Copernicus
(1589), did away with the trepidation theory used in the Alfonsine Tables and
replaced it with Copernicus’ complicated alternative. In Copernicus’ system,
the variation in precession and obliquity was caused by a complex motion of the
Earth, but when transformed into a Ptolemaic system the mechanism becomes
a complicated motion of the fixed stars.

Galileo’s telescopic discoveries were made when Clavius was over 70 years
old. He was sceptical initially, but soon came to endorse Galileo’s findings,
though not his interpretations. He recognized that the astronomy he had de-
fended all his life was in need of reexamination:

I do not want to hide from the reader that not long ago a certain instrument was
brought from Belgium. It has the form of a long tube in the bases of which are set
two glasses, or rather lenses, by which objects far away from us appear very much
closer, and indeed considerably larger, than the things themselves are. This
instrument shows many more stars in the firmament than can be seen in any way
without it, especially in the Pleiades, around the nebulas of Cancer and Orion, in
the Milky Way, and other places . .. and when the moon is a crescent or half full, it
appears so remarkably fractured and rough that I cannot marvel enough that there is
such unevenness in the lunar body. Consult the reliable little book by Galileo
Galilei, printed in Venice in 1610 and called Sidereal Messenger, which describes
various observations of the stars first made by him.

Far from the least important of the things seen with this instrument is that Venus
receives its light from the sun as does the moon, so that sometimes it appears to be
more like a crescent, sometimes less, according to its distance from the sun. At
Rome I have observed this in the presence of others more than once. Saturn has
joined to it two smaller stars, one on the east, the other on the west. Finally, Jupiter
has four roving stars, which vary their places in a remarkable way both among
themselves and with respect to Jupiter — as Galileo Galilei carefully and accurately
describes.

Since things are thus, astronomers ought to consider how the celestial orbs may
be arranged in order to save these phenomena.zo

As to quite how the phenomena were to be saved within a Ptolemaic framework,
he left no clue.

Galileo’s discoveries with the telescope soon were confirmed by others, and
he became arguably the most celebrated scientist in the whole of Europe. His
revealing observations forced people completely to reassess the nature of the
Universe and man’s place within it. One person whose attitude changed was
Galileo himself. Before 1610, he had kept his Copernican views suppressed

* From the final (1611) edition of Clavius’ Commentary on the ‘Sphere’ of Sacrobosco.
Translation from Lattis (1994), p. 198.
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(at least in public) but his telescopic observations began to change all that. He
became Copernicus’ most ardent supporter in Italy and, perhaps more signifi-
cantly, also an extremely hostile (and eloquent) critic of the whole of Aristotelian
physics, which he realized needed to be overthrown. Galileo, a devout Catholic,
went to Rome in 1611 to argue for the Copernican theory but, although he did
manage to convince people of the truth of the recent telescopic discoveries,
he had less success persuading others to believe in his interpretation of the
results.

Whereas his observations of Venus had demonstrated that the Ptolemaic
model of the heavens could not be upheld, it did not distinguish between the
heliocentric theory of Copernicus and Tycho Brahe’s geoheliocentric scheme.
The main reason for the invention of the Tychonic system was the reluctance to
accept a moving Earth, but Galileo had no such reluctance; indeed, he thought
he had a proof of the Earth’s motion via the tides. He thus chose completely to
ignore the Tychonic system and, instead, to contrast Copernicus’ scheme with
that of Ptolemy.ﬂ

One of the key figures who opposed Galileo was Cardinal Bellarmine, the
chief theologian to the Roman Catholic Church and the man who had sent
Giordano Bruno to the stake. He was the principal advocate for Pope Paul V,
and his skills at arguing his case were respected highly. Bellarmine was
sufficiently open-minded to accept that, if conclusive proof of the motion of
the Earth were found, a reinterpretation of the Scriptures would be necessary,
but he did not believe that any of Galileo’s telescopic discoveries amounted to
such a proof because the Tychonic system could explain them equally well, but
with a stationary Earth.

In the battle with the theologians that followed Galileo’s new discoveries,22
the debate concerned not only the Copernican system but also Galileo’s sci-
entific method. Galileo believed that mathematics was the language of nature
and that problems should be formulated mathematically. The truth of the re-
sults obtained from such theoretical considerations could then be verified by
experiment. The more tests they passed, the more confidence one could have

' Other planetary systems were in the air around this time. Many believed that there was no
proof that Mars, Jupiter, and Saturn revolve around the Sun, though Galileo’s telescopic
observations had confirmed this for Mercury and Venus. Thus, men like Francis Bacon, Joseph
Blancan, and Charles Malapert supported a Capellan system in which Mercury and Venus orbit
the Sun but all the other planets the Earth. The widely respected Giambattista Riccioli
suggested that, since Jupiter and Saturn had been shown to have satellites, they were primary
planets like the Sun and, hence, orbit the Earth, whereas the others would orbit the Sun.

This battle is described in detail by de Santillana (1961) and all the significant documents
which pertain to the affair have been translated in Finocchiaro (1989), a work that also
provides a detailed chronology of events.

)
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that one was dealing with a ‘true’ model of reality. As Galileo wrote in 1615:

I think that in discussions of physical problems we ought to begin not from the
authority of scriptural passages, but from sense-experiences and necessary

. 23
demonstrations.

Thus, Galileo was providing a way to the truth that was an alternative to the
Bible, and this was what many members of the Church found so offensive.
Galileo is reported to have said that the Bible teaches how to go to heaven, not
how the heavens go.

Galileo was not without powerful friends and, although he was told privately
to desist from teaching his opinions, he believed still that he could persuade
the Catholic leaders that Copernicus’ heliocentric universe was not at odds
with Scripture. Pope Paul V was having none of it, however, and in 1616
ordered Galileo to be silenced. This gagging order was relaxed 8 years later
after the election in 1623 of a more liberal Pope, Urban VIII, who as a cardinal
had shown a friendly interest in Galileo’s work. Under the new arrangement,
Galileo was permitted to discuss the Copernican theory, provided he treated it
as an astronomical hypothesis and not a model of reality.

The question of what to do with Copernicus’ On the Revolutions was a
difficult one for the Church. On the one hand, they would have liked to ban
it for its advocacy of a moving Earth, but against this was its usefulness to
astronomers. Eventually, they decided, not to proscribe it, but to censor it:

If certain of Copernicus’ passages on the motion of the earth are not hypothetical,
make them hypothetical; then they will not be against either the truth or the Holy
Writ, in a certain sense they will be in agreement with them, on account of the false
nature of suppositions, which the study of astronomy is accustomed to use as its
special right.24

A list of required corrections was issued in 1620. These were fairly small in
number and merely toned down some of the passages where Copernicus seemed
to be arguing for the truth of his system.25

Following the easing of relations between Galileo and the Church after the
election of Pope Urban VIII, Galileo felt sufficiently encouraged to embark
on his epoch-making Dialogue Concerning the Two Chief World Systems, the
Ptolemaic and the Copernican, which was published in 1632.” There are three

> From his Letter to the Grand Duchess Christina, translated in Drake (1957).

** The instructions for censorship were drafted by Cardinal Caetani (Gingerich (1992), p. 113).
The majority of the copies in Italy were censored, but it would appear that the decree had little
effect in other countries (Hine (1973), Gingerich (1992), p. 79).

The Dialogue was written in Italian with the title Dialogo sopra I due massimi sistemi del
mondo Toelmaico e Copernico. It was translated into English by Thomas Salusbury as long
ago as 1661 and this translation was revised by Giorgio de Santillana (Galilei (1953)). A more
modern translation is that of Stillman Drake (Galilei (1962)).

25

26
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Fig. 7.3. The motion of sunspots. The dashed line represents the ecliptic.

speakers, Simplicio (a traditionalist named after the sixth-century commentator
on Aristotle, but whose name carried an obvious double meaning), Salviati (the
spokesman for Copernicanism), and Sagredo (an open-minded man who is
persuaded largely by Salviati) and the discussion takes place over a period of
4 days at Sagredo’s palace. The first day consists of a systematic demolition
of Aristotelian natural philosophy, showing, on the one hand, that Aristotle’s
physics does not stand up to logical analysis and also demonstrating how recent
telescopic discoveries had undermined completely some of its basic principles.
In particular, Galileo seeks to dismantle the Aristotelian distinction between
the terrestrial and supralunar regions. On the second day, the discussion turns
to the motion of the Earth. Aristotle’s theory of motion is picked apart and
Galileo refutes all the arguments usually put forward to prove that the Earth
was stationary.

The advantages of the Copernican theory were discussed on the third day.
This included both the arguments that Copernicus had used himself and more
recent ones such as the discovery of the full range of phases of Venus and the
phenomenon of sunspots. Back in his days of telescopic discoveries, Galileo had
observed dark patches on the Sun which moved and, after a period of continued
observation, concluded that they were on the surface of the Sun and that the
Sun rotated with a period of about 1 month.” The behaviour of these spots can
be used to make a very convincing case for the motion of the Earth, though
Galileo’s argument in the Dialogue is uncharacteristically obscure.” Sunspots
are concentrated near the solar equator, and Figure 7.3 shows the typical motion
of a sunspot as seen from the Earth at four equally spaced times of the year.
When observing a sunspot from the Earth, the daily rotation of the Earth plays
anegligible role (except, of course, that we can only make observations during
the day!) and the observed motions are consistent with a Sun that rotates on an

* Galileo was not the first to make telescopic observations of sunspots; this was Thomas Harriot
in London in 1610; Harriot’s observations are described in detail in North (1974). Many
people, notably the Jesuit Christoph Scheiner, thought that these spots were planets orbiting
the Sun much closer to it than Mercury, but Galileo argued that they moved too slowly and
were often too large for this explanation to be correct (see, for example, Shea (1970)).

The argument given here is based on that given in Smith (1985) and clarified in Hutchison
(1990).
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axis inclined to the ecliptic but maintaining a fixed direction with respect to the
stars.”

To reproduce the same phenomena with a stationary Earth is much more
difficult, because the diurnal motion is now a motion of the Sun. In this case,
we would have to attribute an extra daily rotation to the Sun about a rotation
axis perpendicular to the celestial equator so as to keep the same part of the Sun
facing the Earth during each day, on which the monthly rotation of the sunspots
could be observed as they are. This clearly is much more complicated and hence,
based on the principle that if two theories predict the same phenomena then
the simpler is the most likely, the observed paths of sunspots provide powerful
evidence for the motion of the Earth; in fact, the Earth and Sun must each be
rotating. Thus, the idea of a stationary Earth is untenable and the Ptolemaic
system must be rejected.

Sagredo, after having been informed of the telescopic discoveries that con-
firm the Copernican theory, says: ‘What pleasure the telescope would have
given Copernicus’, but Salviati observes that our admiration for Copernicus is
enhanced by the fact that he proposed a heliocentric universe without these ben-
efits. The last day is used to discuss Galileo’s ‘proof” of the motion of the Earth
based on the tides.” In all the conversations between the three men, Galileo
achieves the maximum effect by building up the traditional arguments through
Simplicio and then, just when they appear invincible, destroying them.

The Dialogue had a huge influence. It was written in a style that brought
home to many people the overwhelming weight of evidence in favour of a he-
liocentric universe. This is how John Playfair, Professor of Natural Philosophy
at Edinburgh, described it in 1819:

His dialogues contained a full exposition of the evidence of the earth’s motion, and
set forth the errors of the old, as well as the discoveries of the new philosophy, with

* To Galileo this was a natural motion. He rejected Copernicus’ three motions for the Earth,
instead arguing that the Earth’s axis would tend naturally to remain fixed with respect to its
orbit and, hence, he took the more modern view that (apart from precession) the motion of the
Earth was made up of just two rotations.

Described previously (Figure 7.1). Salviati states that ‘it is impossible to explain the
movements perceived in the waters and at the same time maintain the immovability of the
vessel which contains them’. In the Dialogue, Galileo expanded on his earlier theory,
attempting to account for the monthly and annual inequalities exhibited by the tides. The
English mathematician John Wallis tried to improve on Galileo’s theory in 1666 by treating the
Earth—Moon system as a single body, the centre of gravity of which described an orbit round
the Sun. This idea was a good one, but Wallis’ theory was still based on the same fundamental
misconceptions as Galileo’s (Aiton (1954)). The question of whether the tides could possibly
provide a proof of the Earth’s motion, even in the context of Newtonian physics, was addressed
by Burstyn (1962) and Aiton (1965), the former believing that tides do offer such a proof, and
the latter arguing to the contrary. There is no simple answer to this question (see Palmieri
(1998)).
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great force of reasoning, and with the charms of the most lively eloquence. They
are written, indeed, with such singular felicity, that one reads them at the present
day, when the truths contained in them are known and admitted, with all the delight
of novelty, and feels one’s self carried back to the period when the telescope was
first directed to the heavens, and when the earth’s motion, with all its train of
consequences, was proved for the first time.”'

In some ways, Galileo was misrepresenting the current state of affairs among
astronomers, virtually none of whom seriously entertained the world system of
Ptolemy any more. As early as 1601 Kepler had written:

Thus today there is practically no one who would doubt what is common to the
Copernican and Tychonic hypotheses, namely, that the sun is the centre of motion
of the five planets, and that this is the way things are in the heavens
themselves—though in the meantime there is doubt from all sides about the motion
or stability of the sun.*

The real debate in astronomical circles was between the Copernican and the
Tychonic systems, so it would appear somewhat surprising that Galileo chose
not to mention the geoheliocentric scheme at all.” Also noteworthy is Galileo’s
silence on Kepler’s astronomy based on elliptical orbits. Instead, he defends
the heliocentric system based on uniform circular motions.

The Dialogue was received enthusiastically by Galileo’s friends and by more
forward-thinking scholars. However, the meaning behind the words was clear
enough for the Church authorities to be outraged, and the Pope agreed that
Galileo had overstepped the mark. The Inquisition was unleashed. In 1633,
Galileo was threatened (probably only half-heartedly) with torture and made to
renounce his belief in the Copernican system; he was forbidden to write anything
about the mobility of the Earth, and the Dialogue was banned.” Galileo was put
under house arrest, where he remained until his death in 1642. Much has been
made of Galileo’s imprisonment, a lot of it rather exaggerated. Compared with
what happened to many others who chose to oppose the Church, he was treated
rather well. It was during this period that Galileo wrote up his life’s researches

:; Quoted from Playfair (1822). 32 KEPLER Apologia. Translation from Jardine (1984).

" Margolis (1991) has argued that Galileo paid particular attention to those arguments for
Copernicanism that are the most awkward for a proponent of the Tychonic system, but that he
refrained from any explicit mention of Tycho’s scheme because he believed that the Pope’s
tolerance of his work was based on an understanding that while he would attack the Ptolemaic
hypothesis, he would leave open the possibility of a stationary Earth through the Tychonic
theory.

"~ Printing of a censored version of the Dialogue was allowed in 1744, but the ban was not lifted
totally until 1822.
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Fig. 7.4. The effect of the annual rotation of the Earth on occultations and transits
of the moons of Jupiter.

into the theory of dynamics, Discourses and Mathematical Demonstrations
Concerning Two New Sciences (1638).35

Galileo’s recantation of Copernicanism perhaps marks the pinnacle of the
war against the heliocentric system. Prior to 1610, arguments for Copernicus’
thesis had been largely aesthetic and unconvincing. But by 1633, the situation
had changed. Telescopic observations had shown Ptolemy’s world system to
be false, and Kepler’s new astronomy had transformed the accuracy of plane-
tary tables. From this point onwards, anti-Copernicans were fighting a losing
battle.

One of Galileo’s most significant contributions to mathematical astronomy
was his work on the periods of the moons of Jupiter. During the 2 years following
their discovery, Galileo spent a great deal of time on this project, soon realizing
that it was non-trivial. Part of the problem was the difficulty in finding a suitable
reference time at which a satellite’s position could be fixed, and he settled
eventually on the instances when a moon disappeared from view behind Jupiter
(the apogee as he called it, or occultation of the orbit of the satellite) and
those when it disappeared in front of the planet (perigee or transit). These
two events could be distinguished by the direction of travel of the satellite in
question. Galileo’s results, computed from a large number of observations, were
inconsistent, but he was able to correct matters when he realized that the annual
motion of the Earth round the Sun had a significant effect.

InFigure 7.4, E| and E; are two different positions the Earth might occupy in
its orbit round the Sun when viewing Jupiter and its moons. Crucial to Galileo’s
determination of the periods of the Jovian satellites was accurate observation
of the apogees and perigees. But depending on the position of the Earth, the

The Italian title was Discorsi e dimonstrazioni matematiche intorno a due scienze attinetti alla
mechanica ed i movimenti locali.
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Table 7.1. Mean orbital periods of the moons of Jupiter.

Galileo
Published Computed Modern theory
Io 1d18%h 1d18; 28, 26h 1d18; 28, 34h
Europa 3d13%h 3d13; 20, 51h 3d13; 17, 42h
Ganymede 7d 4 h 7d 3;55, 14h 7d 3; 58, 48h
Callisto 16d18 h 16d17; 56, 14h 16d18; 0, Oh

Fig. 7.5. Eclipses of the moons of Jupiter.

apogee (perigee) would be observed at A; (P;) or A, (P>) and the angular
difference 6 can be as large as 23°.

After incorporating the corrections implied by this realization, Galileo pub-
lished (in his Discourse on Floating Bodies in 1612) his computed periods for
the four moons he had observed (shown in Table 7.1). The first column gives
the values Galileo published, and these were rounded from those he computed
(shown in the second column). For comparison, the third column lists values
computed from modern theory for the period 1610-14.” Galileo’s calculations
clearly represent a significant achievement.

Galileo also noticed, when timing the invisibility of a satellite during an
occultation, that sometimes the moon would remain invisible for rather longer
than his calculations suggested it should, and he soon realized the cause. The
satellite was in the shadow of Jupiter, just as our Moon goes into the shadow
of the Earth during a lunar eclipse. The situation is illustrated schematically in
Figure 7.5. One might expect the satellite to be invisible from the Earth as it

% Galileo’s values are taken from Swerdlow (1998b); whereas the numbers in the final column
are from Johnson (1931).
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revolves around Jupiter on the orbit ABC D, during the times between A and
C when it is hidden from view behind the planet. But between B and D it is in
the shadow of the Sun and so, in total the satellite will remain invisible from A
to D.

An eclipse, unlike an occultation or a transit, is a phenomenon that does not
depend on the position of the Earth in its orbit. Galileo realized because of this
that eclipses of the Jovian satellites could be used to help solve one of the great
problems of navigation, i.e. the determination of longitude. The local times of
eclipses could be tabulated for some reference point (e.g. Florence) and then the
differences in the local time at which these were observed would correspond to
a difference in longitude from Florence. In 1612, Galileo sent a proposal to the
king of Spain, who had been offering a reward for anyone who could ‘discover
the longitude’, but nothing came of it. He proposed later the same thing to the
Dutch in 1632, again with no success. The use of the satellites of Jupiter to
determine longitude exercised the minds of astronomers and navigators for the
next 200 years, however, and was very successful as a method for determining
accurately the longitude of points on land.

Investigations into the motions of the moons of Jupiter led to another
major astronomical discovery later in the seventeenth century. A number of
astronomers noticed that the predicted times of the eclipses of Io did not cor-
respond to the actual times, with the errors being greatest when Jupiter was at
conjunction, and least at opposition. The Danish astronomer Ole Christenson
Romer concluded that this must be due to the as yet undetected finite speed of
light, with light taking about 22 min to cross the orbit of the Earth (the modern
value is 16 min 38 s).”

The Epitome of Copernican Astronomy

While Galileo was advocating Copernicanism noisily in Rome, Kepler was
adding his weight to the cause through his new theoretical astronomy. The
longest and most systematic of all Kepler’s works is the Epitome of Copernican

¥ See Boyer (1941). Following Aristotle, the orthodox view was that light was transmitted
instantaneously. Galileo, and later Descartes, both tried unsuccessfully to measure the speed of
light. This is another phenomenon for which priority of discovery is difficult to establish with
certainty (see Débarbat and Wilson (1989)). Romer’s conclusion generally was not accepted at
the time but was confirmed early in the eighteenth century by the discovery of the aberration of
starlight (see p. 307).
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Astronomy, published in parts between 1618 and 1621 " Inthe Epitome, Kepler
committed himself unreservedly to heliocentrism, and the book was placed
immediately in the Church’s Index of Prohibited Books. The work did not
contain the lengthy reports of observations and parameter derivations that are
to be found in Kepler’s other writings, and was intended for a more general
audience. It is written in the form of questions and answers, a style fairly
typical of sixteenth-century textbooks, and was read widely.

Although the title suggests that it is a summary of Copernican theories,
the book is actually a detailed textbook of heliocentric astronomy covering
everything from elementary spherical astronomy to the laws of planetary motion
that Kepler himself had discovered. Right from the start, Kepler emphasized
that his astronomy was based on physical principles, and large parts of the
Epitome are descriptions of his celestial physics. Here we have for the first
time a complete theory of the Solar System without the complex geometrical
devices of epicycles and the like that had dominated astronomical thought since
Apollonius. Kepler has left both Ptolemy and Copernicus far behind although
he describes his own work as Copernican because the whole of his physical
theory originates from the choice of the Sun as the centre of the Universe.

Many of the arguments that Kepler used are based on his ideas on the overall
harmony of the design of the Universe. For example, when he came to estimate
the Earth—Sun distance, he assumed simply that the ratio of the Earth’s radius
to the distance between the Earth and the Sun is the same as the ratio of the
volumes of the Earth and the Sun, since ‘nothing is more in accord with the
correct, elegant and ordained order’.” Kepler quoted Aristarchus’ value of
1/2° for the angular diameter of the Sun and, hence, the Earth—Sun distance
is cot 1/4° &~ 229 solar radii. The assumed proportion implies that the Earth—
Sun distance then can be expressed in Earth radii as (cot 1/4°)%/2, and Kepler
obtained a figure of 34691, about 3 times larger than the Copernican value
(though still over 6 times too small) and corresponding to a solar parallax of
1’. He then justified his new value by noting that parallax observations of Mars
indicated that, even when that planet is at its closest to the Earth, it is still more
than 1200 Earth radii away and so the Sun must be a great deal further away
than this. Of course, by placing the Sun 3 times further away from the Earth
than Copernicus had done, he had to argue that the fixed stars were even further

* Epitome astronomiae Copernicanae. No complete English translation appears to be available,
but books IV and V have been translated in Kepler (1995) and extracts are translated in Koyré

. (1973).

D Quoted from van Helden (1985), p. 83.
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away than indicated by Copernican theory. The result of Kepler’s calculations
was a distance to the fixed stars of 60 000 000 Earth radii, and he argued against
disbelieving this by saying:

... it is much more probable that the sphere of the fixed stars should be 2,000 or
1,000 times wider than the ancients said than that it should be 24,000 times faster
than Copernicus said.”

By far and away the most novel aspect of the Epitome of Copernican As-
tronomy is Kepler’s lunar theory.41 As we have seen, the Moon was subject to
some irregularities that did not feature in the motions of the planets. First, there
was evection, discovered by Ptolemy, that linked the motion of the Moon to
that of the Sun. Second there was the variation, discovered by Tycho Brahe,
that manifested itself as a speeding up of the Moon near the syzygies and a
corresponding slow down near the quadratures. Finally, there was the annual
equation, incorporated by Tycho into his modified lunar theory (and indepen-
dently discovered by Kepler, sometime before 1599) that has its origins in the
change in the Earth—Sun distance over the course of a year.

In order to fit the Moon into his physical theory, the Earth would have to have
physical properties similar to those of the Sun, or else how would the Moon
be driven round the Earth in its orbit? Kepler invoked numerous justifications
for attributing physical causes to the Earth. One of these involved applying his
third law to the four newly discovered moons of Jupiter, the data for which he
obtained from Simon Mayr’s World of Jupiter. He quoted their relative distances
from Jupiter, a, as 3, 5, 8, and 13, and their periods, T, as 1 day 18% h, 3 days
13% h, 7 days 2 h and 16 days 18 h, respectively. From these we obtain values of
T?/a® of 0.12,0.10, 0.10 and 0.13. Not exactly constant but, given the crudity
of the data, not bad at all. Kepler thus argued that the Jovian system was like a
mini Solar System, with the planet rotating on its axis, carrying its moons with
it, exactly as the Sun does. If this is the case for Jupiter, then why not the Earth?
A spinning Earth thus not only accounted for the diurnal rotation of the heavens
but also provided one of the primary causes for the motion of the Moon.

If it was the spinning Earth that was pushing the Moon around its orbit it
might seem natural for the Moon to orbit near to the Earth’s celestial equator.
Kepler inferred from the fact that actually it moves near to the ecliptic that it
was the motive virtue of the Sun that was dominant in determining the motion
of the Moon, and this was reasonable, since in fact the Moon is in orbit around
the Sun with the motion around the Earth just making this orbit rather erratic.

“ KEpLER Epitome of Copernican Astronomy, IV. Translation from Kepler (1995).
Described in detail by Stephenson (1987).
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The intricacies of the lunar motion showed that the Moon had to be moved by
a complex interplay between the effects of the Sun and the Earth, and Kepler
hit upon the idea that the irregularities in the motion of the Moon were due to
the effect of sunlight.

Kepler needed to quantify the effect of sunlight for use in his physical theory
and here again he fell back on an argument based on design. What could be
more natural than a year of 360 days made up of 12 synodic months of 30 days
each? This was surely the perfect state of affairs, and so the deviations from
this would be due to the effect of sunlight. Thus, sunlight caused the Earth to
rotate slightly faster than the natural rate so that it completed 5% extra rotations
during each orbit round the Sun. The Moon, on the other hand, completes 12
synodic months each year and undergoes an extra motion in longitude of just
over 132°, so Kepler argued that the increase in the Earth’s rotation rate due
to sunlight caused an increase in the speed of the Moon, which resulted in an
‘extra’ motion of just under 11° per synodic month. He then argued that this
basic strength would be modified by factors such as the distance between the
Sun and the Earth, and the angle between the Sun and Moon as seen from the
Earth. These variations in the efficacy of sunlight were then incorporated into
a fairly elaborate geometrical theory that accounted for evection and variation.

The so-called ‘annual equation’ was, in Kepler’s view, simply a manifestation
of the fact that the effect of sunlight on the rotation rate of the Earth increased
as the Earth moved closer to the Sun. Consequently, the Earth rotated faster
when it was near perihelion but slowed down near aphelion, and this changed
the length of the apparent day (the time between successive crossings of the
meridian by the Sun). The length of the apparent day varies for other reasons (the
fact that the axis of the Earth’s rotation is not perpendicular to the ecliptic plane
and the varying speed of the Earth as it orbits the Sun) and these irregularities
are measured by the equation of time.” Since astronomical observations in
the seventeenth century were made with reference to the actual position of the
Sun, they had always to be corrected using the equation of time, and this was
particularly important for the Moon, because it moves relatively rapidly, and an
error in 30 min in the time of observation corresponds to an error in longitude
of about 16’, easily detectable with the naked eye. Kepler thus believed that the
annual equation of the Moon was, in fact, a modification to the equation of time
rather than an intrinsic property of the motion of the Moon.

*“ The equation of time is the difference between the local apparent time (based on the actual
position of the Sun) and the local mean time (based on the mean solar day of 24 h). The first
detailed mathematical treatment of the equation of time was given by Ptolemy in the Almagest
(see p. 71) and it was in common use in ancient and medieval times (see Kennedy (1988)), but the
first reliable table of the equation was not published until 1673 (see Kollerstrom (2000), p. 23).
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Kepler’s physical explanations for the lunar motion were ingenious and he
was very proud of them, but they were essentially ad hoc, being derived to fit
the observed phenomena. They did have one great advantage over geometrical
theories, though, since changes in speed did not have to be accompanied by
changes in distance as they did in systems based around epicycles. Thus, Ke-
pler’s theory did not predict absurdly large changes in the apparent diameter
of the Moon over the course of a month, as Ptolemy’s and, to a lesser extent,
Ibn al-Shatir’s had done. Kepler’s lunar theory found little support among his
contemporaries and is little known today. It did, however, provide the inspira-
tion for the later work of Jeremiah Horrocks, which in turn underpinned that of
Isaac Newton.

All three of Kepler’s laws of planetary motion were expressed clearly in
the Epitome. These ideas did not catch on immediately, but between 1630 and
1650 the Epitome of Copernican Astronomy probably was the most widely
read astronomical work in Western Europe.43 Elliptical orbits generally were
accepted by 1655 but, largely because of the difficulty in application, the
second law was used virtually always in a simpler (and only approximate) form.
The third law was of little use in practical astronomy and had no satisfactory
theoretical basis; as a consequence, it did not attract much attention in the mid
seventeenth century.44

The Rudolphine Tables and their impact

The main reason that Kepler’s laws were accepted by astronomers was not the
Epitome, though — it was the publication of the Rudolphine Tables in 1627.
These long-awaited tables, from which planetary positions could be computed
based on a heliocentric Universe with elliptic planetary orbits, were delayed for a
number of reasons, one of which was simply the huge quantity of work that went
into them. Kepler described this effort, with a justifiable lack of modesty, as the

unexpected transfer of the whole of astronomy from artificial circles to natural

causes that were most profound to investigate, difficult to explain and difficult to
. 45

calculate, my attempt being the first . ..

» Russell (1964).
One might think that Kepler would have used his third law to compute the mean solar distances
of the planets from their sidereal periods, which were determined very accurately, but he did
not. There are at least two possible reasons for this. First, he may have anticipated criticism for
the use of a law that was grounded in his speculations about harmony rather than derived from
systematic observation, and second, he may well have believed that, as with other essentially
. correct laws, the third law was subject to small variations.
From the preface to the Rudolphine Tables, which is translated in Gingerich (1972).
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Fig. 7.6. Napier’s geometrical definition of logarithms.

Another source of delay was Kepler’s discovery of logarithms, which he
described as a ‘happy calamity’, and his subsequent investigations of them.
The invention of logarithms simplified greatly many of the tedious arithmeti-
cal calculations required by astronomers and, unlike many other mathematical
advances, was an almost instant success. Laplace later remarked that:

it is an admirable contrivance . .. which, by reducing to a few days the labour of
many months, we may almost say doubles the life of astronomers, and spares them
the errors and disgusts inseparable from long calculations.”

Logarithms were developed in the 1590s by the Scotsman, John Napier, and
independently by the Swiss instrument maker, Jost Biirgi.47 However, Biirgi did
not publish his work until 1620, whereas Napier’s first account of his theory
appeared in print in 1614, and so Napier usually is credited with the invention.”

The basic idea that lies behind logarithms is the correspondence between
geometric progressions

and the arithmetic progressions formed by the exponents:
1,2, 3,....

Multiplying two numbers in the geometric series together is equivalent to adding
the corresponding exponents. The closer r is taken to 1 the closer adjacent terms
in the geometric progression are to each other, and the geometric progression
can be made to include as many numbers as one requires within a given interval.

From this basic idea, Napier developed a geometrical definition of loga-
rithms, illustrated in Figure 7.6. The upper line A B is of fixed finite length, and

* LAPLACE L'exposition du systéme du monde (1796), Book V, Chapter IV, Translation from

p Laplace (1809).
Biirgi has been mentioned already for his work on prosthaphaeresis, a technique that was used
prior to the invention of logarithms for simplifying certain arithmetic calculations (see note 25
on p. 164). Biirgi spent some time with Kepler in Prague, but Kepler did not appreciate fully
the value of logarithms until reading Napier’s work (see, for example, Armitage (1966),
p. 167).

* Napier’s original account Mirifici logarithmorum canonis descriptio (Description of the
Wonderful Canon of Logarithms) contained tables and a brief explanation of how they were to
be used. The theory behind the construction of the tables appeared posthumously in 1619.
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the point P moves along it in such a way that its speed is proportional to the
distance from B. If we consider a succession of small time intervals Az, with P
being at Py, P, Ps, .., and assume that the speed is constant during each time
interval (and equal to the speed of P at the beginning of the interval), then the
distance | P, P,| is given from the definition of the motion by k| P, B|At, where
k is the constant of proportionality. Hence,

|P2B| = [P1B| — | P P2| = | P B|(1 — kAt).

It follows that the lengths | Py B|, | P B|, | P3 B], . . . form a decreasing geometric
progression, and the length x indicated in the figure corresponds to this geomet-
ric progression in the limit as At — 0. The associated arithmetic progression
is derived from the lower line, on which the point Q moves with uniform speed
equal to the initial speed of P, P and Q starting from A and C at the same
time. If we denote the distance |C Q| by y, then y is what Napier termed the
logarithm of x, which we can write as y = NLog(x).

It was the laborious calculations required in spherical astronomy that led
Napier, who was not a professional mathematician, to invent logarithms (he
sent some preliminary results to Tycho Brahe for approvafw) and actually he
dealt with logarithms of sines. Regiomontanus’ tables of sines were based on
a circle with radius 107 and, because of this, Napier chose 107 for the length
|AB|, this being the largest number for which he needed the logarithm. To see
how Napier’s logarithms are related to functions used today, we can interpret
Napier’s definitions using the modern language of the calculus. The geometrical
definitions are equivalent to the differential equations

d_x = —x, d_y =107,
dr dr
with the condition that y = 0 when x = 107. Eliminating ¢ leads to

y = 107 In(10" /x)

in terms that we now call the ‘natural logarithm’. Napier’s logarithms thus have
the property that

NLog(x1x») = NLog(x;) + NLog(x,) — 107 In 107 (7.1)

and so, with the help of a table of these logarithms, any multiplication can
be reduced to two additions, a huge saving in time when the numbers to be
multiplied had large numbers of digits.50

¥ Kline (1972), p. 256.
© Katz (1998), p. 418 gives details of how Napier actually applied his logarithms to
trigonometric problems.
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Napier’s invention greatly impressed Henry Briggs, who was at the time the
Professor of Geometry at Gresham College, London. The two of them agreed
that the system should be modified to make it easier to use. Briggs tells the
story as follows:

I'myself . .. remarked that it would be more convenient that O be kept for the
logarithm of the whole sine [as it was in Napier’s original work], but that the
logarithm of the tenth part of the whole sine, that is to say 5° 44’ 21” [i.e. the angle
whose sine is —] should be 10'°. And concerning that matter I wrote immediately
to the author hlmself and ... I journeyed to Edinburgh, where being most
hospitably received by him, I lingered for a whole month. But as we talked over the
change in the logarithms he said that he had been for some time of the same
opinion and had wished to accomplish it; he had, however, never published those he
had already prepared, until he could construct more convenient ones if his affairs
and his health would permit of it. But he was of the opinion the change should be
effected in this manner, that O should be the logarithm of unity, and 1010 that of the
whole sine, which I could not but admit was by far the most convenient.”

These modified logarithms are, apart from the position of the decimal point,
just logarithms to the base 10 (log,,) or, as they became known, common
logarithms. Briggs went on, after Napier’s death, to produce tables of common
logarithms accurate to fourteen decimal places, and these formed the bases of
tables of logarithms right up until the arrival of the electronic calculator. As
an aid to computation, common logarithms are simpler than Napier’s original
logarithms because setting log 1 = 0 ensures that there is no term equivalent to
the 107 In 107 in Eqn (7.1) to subtract, i.e. log,o(x1x2) = log;(x1) + log;(x2).

Napier’s work contained a discussion on the use of decimal fractions and
his notation was the same as that which we use today. Because logarithms
were welcomed widely throughout the scientific community, the publication of
Napier’s work and then Briggs’ tables had the effect of spreading the use of
decimal fractions across Europe.

Kepler carried out a study of Napier’s logarithms during the winter of 1621 /2
and wrote a short book on the subject.” He constructed his own version of
logarithms, following Napier’s approach rather than Briggs’, which are related
to our modern natural logarithms through

Keplerian logx = 10° In(10°/x).

The Rudolphine Tables contains tables of these logarithms and was the first book
to require the use of logarithms in a scientific application. Kepler was thrilled
with this new device, though his former teacher Michael Mistlin commented,

. Quoted from Coolidge (1949). 52 Chilias logarithmorum, eventually published in 1624.
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‘it is not seemly for a professor of mathematics to be childishly pleased about
any shortening of the calculations’.”

The great success of the Rudolphine Tables in predicting planetary positions
is well illustrated by the reaction of Peter Criiger, Professor of Mathematics at
Danzig, who until their appearance had been unimpressed by Kepler’s work.
Responding to Philip Miiller, Professor of Mathematics at Leipzig, on the sub-
ject of improving the planetary tables produced by Longomontanus, he wrote
(in 1629):

But I should have thought that it would be a waste of time now that the Rudolphine
Tables have been published, since all astronomers will undoubtably use these . . .
For myself, so far as other less liberal occupations allow, I am wholly occupied
with trying to understand the foundations upon which the Rudolphine rules and
tables are based, and I am using for this purpose the Epitome of Copernican
Astronomy previously published by Kepler as an introduction to the tables. This
epitome which previously I had read so many times and so little understood and so
many times thrown aside, I now take up again and study with rather more success
seeing that it was intended for use with the tables and is itself clarified by them ... I
am no longer repelled by the elliptical form of the planetary orbits; Kepler’s proofs
in his New Astronomy have convinced me.**

We know now that the errors in Kepler’s tables were about 30 times smaller
than those in previous astronomical tables, though this would not have been
apparent when they were first published, and not all astronomers were convinced
immediately.55

Whereas Kepler’s planetary theory, in the form of the Rudolphine Tables, was
a success, the same could not be said for his physics. One of the most significant
astronomical treatises published between those of Kepler and Newton was that
written by the Parisian librarian Ismael Boulliau in 1645. Boulliau supported
strongly the idea of elliptical orbits, but was not prepared to accept Kepler’s
physical theory. In the introduction he wrote:

After I had long considered Kepler’s Commentaries on Mars and his Epitome of
Copernican Astronomy, and had seen that his elliptical hypothesis represents the
observed celestial motions more exactly than all the others, I did not cease praising
and commending his felicitous ability and cleverness. At last I determined to seek
the truth of a hypothesis so apt and appropriate, and to confirm the truth thus found

j: Quoted from Caspar (1993), p. 309. 3 Quoted from Russell (1964).

" The Polish Jesuit Michael Boym introduced the Rudolphine Tables to the Far East, declaring in
1646 that they were ‘of inestimable value in calculating partial and complete solar eclipses,

s together with celestial movements’ (Szczesniak (1949)).

"~ Astronomia Philolaica, the reference to the Pythagorean Philolaus reinforcing the fact that the
Earth is not immobile.
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by reasons. But I saw that in the explanation of the hypothesis that man had left
many roughnesses, had enunciated many things obscurely, and had thrust abstruse
physical causes upon us in place of demonstrations; also, he had not demonstrated
certain things that required demonstration.”

Boulliau took particular exception to Kepler’s supposition that the effect of the
motive virtue in the Sun decays inversely with distance in the ecliptic plane,
and argued instead that, if such a physical force existed, it would have to decay
in inverse proportion to the square of the distance, just as the intensity of light
does. However, like many of his contemporaries, Boulliau did not believe any
such force did exist; instead, his view was that we should look to geometry
for the causes of celestial motion, i.e., planets moved as they did because the
geometrical form of an ellipse represented the natural motion of such bodies.

Kepler’s second law had its roots in his physical theory and, having discarded
the physics, Boulliau could discard the troublesome second law, too. In the mid
seventeenth century, application of the second law involved the solution of
the equation = 6 + e sin 8 for 6, which involved messy and non-geometrical
trial-and-error-type approaches and thus was considered unsatisfactory by those
who looked for elegance in planetary motion. Boulliau replaced the second law
with one that was, to him, more appropriate. As he was still fixated with the
aesthetic beauty of uniform circular motion, he proposed a scheme in which
a planet always was moving instantaneously on a circular path at constant
angular speed, but in which the circles were of continually changing radius.
These circles, taken together, made up a surface in three-dimensional space,
and he took this surface to be a cone, and then the planetary path was the
intersection of this cone with the plane of the orbit, i.e. an ellipse!

In 1653, Seth Ward, Savilian Professor of Astronomy at Oxford, demon-
strated that Boulliau’s hypothesis was equivalent to treating the empty focus
of the elliptical orbit as an equant point, about which a planet would move
with uniform angular speed (something Boulliau had never suspected and that
Kepler had examined and discarded in the Epitome of Copernican Astronomy ™).
Boulliau’s theory — which gave meaning to the otherwise purposeless empty
focus of the elliptical orbit — was followed widely, but Boulliau realized eventu-
ally that his replacement law did not predict planetary positions satisfactorily.59

~" Quoted from Wilson (1970).

In Book V, Part I, 5. In the Rudolphine Tables, Kepler claimed that one of his friends, the
Jesuit Albert Curz (Curtius in Latinized form) used the empty focus as an equant.

" Another attempt to make the empty focus an equant point was made around 1690 by G. D.
Cassini. He proposed that planetary orbits took the form of ovals defined by the condition that
the product of the distances of a point on the curve from the two foci is constant. Such curves
are now referred to as ‘Cassini ovals’, or ‘cassinoids’.
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Fig. 7.7. Boulliau’s modified version of Kepler’s second law.

In 1657, he produced a modified theory that provided answers in much better
agreement with the true area law, though still not equivalent to it.

This modified theory is illustrated in Figure 7.7, in which the heavy curve
represents the elliptical orbit, and the lighter curve the circumscribing circle.
The Sun is at S, and the empty focus of the ellipse is F. In Boulliau’s original
theory, the planet was at B, where the angle AF B is the mean anomaly, .
In the modified theory, we construct the line BN, perpendicular to the axis of
the ellipse which, when extended, cuts the circumscribing circle at C. Finally,
we join C to the focus F', and the planet P is situated where this line cuts the
ellipse. Based on the Tychonic data of the time, this version of the second law
actually is as accurate as Kepler’s law.”

If we denote the eccentricity of the orbit by e, then we know from the basic
geometry of an ellipse that |[BN|/|CN| = /1 — ¢2. Thus, writing u for the
angle subtended by the planet at the empty focus, we have

tant =+/1 — e2tanu,

from which
u==t++ %ez sin 2t + O(e).

As Newton would later demonstrate (see p. 268), this is correct up to second
order in e.

Notwithstanding the success of Keplerian astronomy, many influential as-
tronomers were still not prepared to accept the idea of a heliocentric universe.
One such was Giambattista Riccioli, a well-respected professor at the Jesuit
College in Bologna, who published his New Almagest in 1651. Riccioli was a
serious astronomer and knew that Ptolemy’s universe could no longer be upheld,

“ A comparison of the accuracy of the two methods is given in Wilson (1970).
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but his religious beliefs forced him to argue against the Copernican hypothesis:

... all Catholics are obliged by prudence and obedience . . . not to teach
categorically the opposite of what the decree lays down.”

In the New Almagest, he produced forty-nine arguments that were in favour
of heliocentrism, and seventy-seven that were against, and thus the weight of
the arg,umentﬁ2 favoured an Earth-centred cosmology! However, even Riccioli
recognized that in terms of predictive power, astronomy owed much to Kepler,
particularly with regard to the motion of Mars.

As far as Jupiter and Saturn were concerned, the Rudolphine Tables were not
really an improvement on other competing planetary theories. In his Reformed
Astronomy of 1665, Riccioli listed seventy-one observations of Saturn, both
ancient and modern, and compared them with various planetary tables. He
concluded that the tables he himself had computed and those of Boulliau were
the best, while those of Kepler and Longomontanus were not far behind.” John
Flamsteed, the first Astronomer Royal, wrote in 1674

... the places of the planet Jupiter have been, for these last two years, some 13 or
14 minutes forwarder in the heavens, than Kepler’s numbers represent; and . . . his
motions are not much better solved by any others . . . N

In other words, all the planetary tables were similarly inaccurate. One prob-
lem here was the accuracy of the orbital parameters that Kepler had com-
puted, and Flamsteed did manage to improve on Kepler’s theory for Jupiter by
recalculating these parameters. The real problem remained hidden, though.
In the eighteenth century, Laplace showed that the gravitational effect of
these two large planets on each other causes deviations in their orbits from
perfect Keplerian ellipses, that are of far greater significance than the er-
rors introduced by using eccentric circles and equants rather than elliptical
orbits.

o Quoted from Russell (1989). According to Russell, Riccioli asserted that Catholics were under
no obligation to believe that the Copernican system was heresy (as the Holy Office decree of
1633 had stated), but that out of respect for the Church they ought not to maintain its truth in
public. There were, in fact, no serious attempts by the Holy Office in Rome to discipline those
of a Copernican persuasion and outside Italy astronomers were pretty much free to write what

R they believed.
Almost literally. The frontispiece of Riccioli’s New Almagest shows his own world system
(described briefly in note 21 on p. 209) being weighed against that of Copernicus while
Ptolemy’s system lies discarded on the ground.

. Riccioli’s observations and calculations contain numerous errors (Wilson (1970)).
Quoted from Wilson (1970).
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Fig. 7.8. Transits of inferior planets.

Transits of Mercury and Venus

One of the reasons that many astronomers were impressed by Kepler’s tables
was their success at predicting the transit of Mercury, which took place in 1631.
Transits of Mercury or Venus take place when the planet lies directly between
the Earth and the Sun, and so a necessary condition for a transit is that we
have an inferior conjunction. The orbits of the inferior planets do not lie in the
ecliptic plane but are instead inclined slightly to it, so in order for a transit to
occur the planet must either be at its ascending node (A in Figure 7.8) with the
Earth at E, or at its descending node D with the Earth at E,.

In 807, an observed spot on the Sun was interpreted as a transit of Mercury
even though it lasted for 8 days and there were a number of other medieval
reports of transits of Mercury or Venus, though none has been authenticated.”
Kepler claimed also to have observed a transit in 1607 but later, when he realized
there could not have been one on the day of his observation, he acknowledged
his error. In 1629, he did, however, predict a transit that 2 years later (after his
death) became the first to be observed. Transits of Mercury last at most about
4 h and, since pre-Keplerian theories of Mercury were in error by several days
in the times of predicted inferior conjunctions, Kepler’s successful prediction
(even though he was out by about 5 h) was extremely impressive.ﬁﬁ

Apart from providing strong evidence for the accuracy of the Rudolphine
Tables, this transit was important for two reasons. First, it helped greatly in
the accurate determination of Mercury’s orbit (since the same error in angular
measurement results in a much greater uncertainty in the planet’s position in its

* Goldstein (1969) discusses the transit reports of al-Kind1, ninth century, Ibn Sina (Avicenna)
eleventh century, Ibn Rushd (Averroés) and Ibn Bajja (Avempace) twelfth century. The only
one that could possibly have been a transit is that of Ibn Sina.

" In terms of the predicted longitude, Kepler’s error amounts to 14’ 24”. By comparison, the error
in the set of tables published by the Dutch astronomer Philip Lansberg in 1631-32 was 1° 21/,
and that in the Prussian Tables based on Copernicus’s theory was about 5° (Wilson (1970)).
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orbit near elongation than when directly in front of the Sun”) and, second, it
provided the first indisputable quantitative measure of the apparent magnitude
of a planetary disc. Pierre Gassendi, who was one of the three people who are
known to have observed the transit of 1631, was very surprised at Mercury’s
small size (he measured its angular diameter at about 20”, whereas Tycho
Brahe had estimated its apparent diameter at mean distance as 2’ 10”). Johannes
Hevelius made accurate observations of the transit of 1661, and discovered that
Mercury was even smaller than Gassendi had thought. Hevelius also found
that only those astronomical tables based on Kepler’s theory of elliptical orbits
predicted a transit on the correct day.

The British astronomer Vincent Wing used a modified version of the second
law rather than Kepler’s area law, but clearly he believed that Kepler’s successful
predictions of Mercury transits represented very strong empirical evidence for
his elliptical orbits, since he wrote in the posthumously published Astronomia
Britanica of 1669:

But this is proved especially by the planet Mercury, which on 28 Oct 1631, and
again on 23 Oct 1651 and 23 April 1661 was interposed between our vision and
some part of the body of the sun; on each occasion the Keplerian tables,
conforming to the Copernican hypothesis, best agreed with the truth, while the
tables of Longomontanus and Argolus, conforming to the Tychonic system,
contained errors of many days.ﬁS

Transits of Venus are much rarer than those of Mercury. Whereas there were
fourteen transits of Mercury in the twentieth century, only five transits of Venus
have ever been observed — those in 1639, 1761, 1769, 1874 and 1882 (though
the sixth is on 7 June 2004). The 8-year gap between the two transits in the
eighteenth century and again between the two transits in the nineteenth century
is due to the fact that thirteen sidereal periods of Venus is about 2921 days,
which is very nearly 8 years. Thus, if the Sun, Venus and the Earth are aligned
at a given time, they will be again 8 years later. The orbit of Venus is inclined at
a little over 3° to that of the Earth and the discrepancy between the two periods
leads to a change in ecliptic latitude of Venus between the two alignments of
about 22/, which is less than the angular diameter of the solar disc (32’), and
so, provided the first transit is not too close to the centre of the solar disc, there
will be another after an 8-year gap. However, there cannot be another 8 years
after that.

67 . . . . . .
Transits of Mercury actually occur about thirteen times per century, though each one is visible
only from certain parts of the globe. They became less significant when Halley became able to

. observe the planet in daylight to within 15° of the Sun.
Quoted from Wilson (1973). The dates are Old Style (see note 3 on p. 120).
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Fig. 7.9. Transits of Venus between 1396 and 2012.

Figure 7.9 shows the paths of Venus across the Sun for the eleven transits
between 1396 and 2012. There was only one transit in the fourteenth century,
with Venus passing just above the solar disc in 1388, but since then all transits
have occurred in pairs. Venus was near its ascending node during the transits
in the fourteenth, seventeenth and nineteenth centuries, but near its descending
node during the transits in the sixteenth and eighteenth centuries, as it will be
also in the twenty-first century.

Kepler predicted the transit of Venus in 1631, but this turned out to be visible
only in America. He failed to predict the transit of 1639 which was visible from
Europe, however, since the Rudolphine Tables implied that Venus would pass
below the Sun. As a result, astronomers were not ready with their telescopes to
observe the spectacle. The transit did not go unobserved though, thanks to the
efforts of the young and largely self-taught Englishman, Jeremiah Horrocks.

Horrocks obtained a copy of the Rudolphine Tables in 1637 and comparisons
of observations with Kepler’s and other contemporary tables soon convinced
him of the superiority of Keplerian astronomy (though he did not subscribe to
the physical side of this new science). He set about trying to improve the tables
by making more accurate observations,” beginning by refining the elements of
the orbit of the Earth, reducing the eccentricity from Kepler’s value of 0.018
to 0.0173," which he derived by combining Tycho’s solar theory (in which
Tycho had assumed a solar parallax of 3") with Kepler’s value of 1’ for the solar
parallax. This change, which reduced the errors in Tycho’s theory by more than

% Horrocks’ observational procedures were quite sophisticated and often involved the design and
o construction of his own instruments (Chapman (1990)).
Still about 3 per cent too large, Wilson (1980), p. 67.
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Fig. 7.10. Horrocks’ approximation to the area law.

50 per cent, then had a knock-on effect for all the planetary theories. Horrocks
directed most of his efforts on Venus and set about trying to determine its
orbital parameters with great accuracy. He concluded from his observations
and calculations that the mean solar distance (in terms of the radius of the orbit
of the Earth) was 0.7233, exactly as predicted by Kepler’s third law, rather than
Kepler’s value of 0.7241. He wrote in his Venus Visible on the Sun (1662),
published over 20 years after the author’s untimely death aged only 22:

... the proportion that obtains between the periods of the motions of the planets
and the semi-diameters of their orbits is most exact, as Kepler, its discoverer,
rightly states, and as I by repeated and most certain observation have found; indeed
there is not an error of even a minute . .. '

So Horrocks was a believer in Kepler’s first and third laws but, as with many
other astronomers, he had problems in applying the second. As we have seen,
Kepler had reduced the application of the second law to the solution of the
equation t = 6 + e sin 6 for the eccentric anomaly 6. In the Rudolphine Tables,
Kepler tabulated 7 (in fact the logarithm of ) for equally spaced values of 6,
from which the user of the tables had to interpolate between the non-uniformly
spaced values of . Horrocks instead derived a geometrical approximation,
which is illustrated in Figure 7.10, and clearly has its origins in the use of
epicycles. Given the mean anomaly #, we locate a point C on the unit circle and
then construct a circle of radius e, where e is the eccentricity of the planetary
orbit. If we denote the angle A O B by 6, an application of the sine rule (Horrocks
actually used the law of tangents) to the triangle O BC, BC being parallel to
OA, gives

1 e

sinf _ sin(z — 6)

"' Horrocks Venus in sole visa. Quoted from Wilson (1978).
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Fig. 7.11. Determining the size of Venus as viewed from the Sun.

from which e sin 6 = sin(t — ) ~ t — 6 if ¢ and 6 are close together. Horrocks
knew that he was only approximating the area law, but he underestimated the
magnitude of the error.”

With his new orbital parameters for Venus, Horrocks predicted that there
would be a transit in 1639 (a supreme test of the accuracy of his theory) and
he wrote to his friend William Crabtree asking him to attempt to observe the
predicted transit, so as to reduce the chance that bad weather might interfere with
the observation. As far as we know, Horrocks and Crabtree were the only two
people to observe the event.” Horrocks waited patiently through the predicted
day of the transit and probably was resigning himself to failure when, not long
before sunset,

... the clouds, as if by Divine Interposition, were entirely dispersed . .. and I then
beheld a most agreeable sight, a spot, which had been the object of my most
sanguine wishes, of an unusual size, and of a perfectly circular shape, just wholly
entered upon the sun’s disc . . . | was immediately sensible that this round spot was
the planet Venus, and applied myself with the utmost care to prosecute my
observations. "

Horrocks measured the apparent diameter of Venus at 1’ 16” (about 10 times
smaller than contemporary wisdom suggested) and used this, together with
some Keplerian style speculation, to estimate the Earth—Sun distance. He first
calculated the apparent diameter of Venus as it would be observed from the Sun
using the method illustrated in Figure 7.11. If we denote the radius of Venus by
r, we then have

1, ~ 1 | 1
Ja A tan yo = r/d, 3B ~tan 5B =r/dy,

so B can be determined in terms of « provided the ratio d,/d; is known.

” Similar geometric approximations were developed around the same time by Bonaventura
Cavalieri (Wilson (1989b)).
Given the rarity of the event, Horrocks was extremely fortuitous in his prediction. The idea that
there might be a transit did not occur to him until the end of October 1639 (Old Style) and the
transit took place on November 24! (Chapman (1990)). According to Fernie (1996), Horrocks
and Crabtree never met but communicated entirely through letters, though this seems unlikely
(Applebaum (1975)). Maor (2000) relates that the two met at Cambridge, but after leaving the
University maintained their friendship through correspondence only.
HoRrrocks Venus in sole visa. Quoted from Fernie (1996).
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Horrocks accomplished the determination of this ratio by using Kepler’s
third law. Since d; + d, is the Earth—Sun distance, we have

1 d 3 3
L (Y (142
T2 d, d

where Ty is the orbital period of Venus (in years). Thus, using o = 76",
Horrocks obtained the result 8 ~ 28”. Then he did the same for Mercury based
on Gassendi’s measurement of @ ~ 20", and again arrived at 8 ~ 28”. In order
to provide an explanation for his third law, Kepler had assumed that planetary
volumes were directly proportional to solar distances, but Horrocks showed
that this would have implied an apparent diameter for Mercury of over 2’. So
instead, Horrocks hypothesized that the diameters of the planets were propor-
tional to their orbital radii, which in turn would imply that the apparent diameter
of each planet as seen from the Sun was the same, in agreement with his re-
sults for Venus and Mercury. He applied this idea to the Earth and concluded
that the solar parallax was tiny — only 14”, corresponding to an Earth—Sun
distance of about 15000 Earth radii. Although the method clearly was dubi-
ous, the result was much closer than previous estimates, and demonstrates that
some astronomers at least were coming to terms with the fact that the Solar
System was much larger than people had previously been prepared to contem-
plate.75

Horrocks’ faith in Kepler’s harmonic law influenced Thomas Streete, one
of the leading astronomers working in England at the time. In his Astronomia
Carolina (1661) he used the law to calculate the mean solar distances of the
planets from their sidereal periods, leading to improved accuracy for Mercury,
Venus, and Mars. He made use also of the modified version of Kepler’s second
law due to Boulliau (though wrongly attributed by Streete). It was from this
work that Isaac Newton became aware of Kepler’s first and third laws.” Streete
also utilized Horrocks’ values for the solar parallax and the eccentricity of the
Earth, and as a result the planetary tables he computed were rather better as a
predictive tool than those of his contemporaries, Boulliau and Wing. They were
reprinted many times, well into the eighteenth century.

 Another astronomer who realized that the accepted value for solar parallax was far too large
was the Belgian, Gottfried Wendelin. Based on observations of planetary diameters, he
concluded that the parallax of the Sun was no more than 15”. Toward the end of the
seventeenth century, G. D. Cassini devised an indirect method by which he managed to put an
upper bound of 12” on the solar parallax (van Helden (1989)). Accurate direct measurements
26 had to wait until the transits of Venus in 1761 and 1769 (see p. 315).
See Whiteside (1964) and Wilson (1978).
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Horrocks’ lunar theory

Kepler’s lunar theory was, as a predictive tool, far behind his planetary theories,
and he acknowledged this. In the preface to the Rudolphine Tables he wrote
that there was

clear evidence . . . that the motions of the sun, moon and [precession] are not up to

mathematical precision, but have rather slight physical increases and decreases in
. 71

an irregular way.

In the mid seventeenth century, Boulliau, Wing, and Streete all produced lunar
theories™ though none were as accurate or as conceptually simple as that of
Horrocks — developed between 1637 and his death in 1641, but not published
until 1672 (by the Astronomer Royal, Flamsteed).

It was Flamsteed’s advocacy of Horrocks’ theory that led to it becoming well
known. For example, William Whiston, in his Astronomical Lectures (1728)
referred to ‘Mr Horrox’s Lunar Hypothesis, as cultivated and explained by
Mr Flamsteed’.” Flamsteed noted that, for a particular date in 1672, Horrocks’
theory was accurate to within 2" of arc whereas those of Boulliau and Streete
were in error by roughly 15". Horrocks’ theory also seemed to predict distances
better, since the observed decrease in the apparent diameter of the Moon over
the course of 4 months at the end of 1671 and the beginning of 1672 was also
predicted by Horrocks’ theory, but not by other contemporary theories.

Kepler had used elliptical orbits within his lunar theory, but he had not made
much of this construction because it did not work very well; it was Horrocks who
first developed a lunar theory based properly on elliptical motion. Horrocks’
ideas grew out of a careful study of the Epitome of Copernican Astronomy. By
comparing the predictions of Kepler’s lunar theory with eclipse observations he
eventually was led to a theory in which the Moon moves on an elliptical orbit,
the eccentricity and major axis of which oscillate (see Figure 7.12)." At any
instant, the Moon is considered to be moving on an ellipse, the centre of which
is C with a focus at E, the Earth. The point C, however, moves on a circle, the
centre D of which lies on the mean apsidal line for the Moon’s orbit, E A. Thus,
the eccentricity | EC| and the apsidal line E A oscillate about their mean value
and position, respectively.81 This oscillation is linked to the motion of the Sun
S by the relation 2/SE A = /C DA, and the whole mechanism is superimposed

Z Quoted from Gingerich (1972). 78 All are described in Wilson (1989b).
Quoted from Kollerstrom (2000), p. 81.
The origin of Horrocks’ lunar theory is described in detail in Wilson (1987b).
In Flamsteed’s published account, in which |ED| = 0.05505 and |[DC| = 0.011731
(the length of the semi-major axis of the elliptical orbit being fixed at 1), he actually took the
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Fig. 7.12. Horrocks’ mechanism for the Moon.

on a steady motion of the mean apsidal line with respect to the stars, which is
implied by the differing lengths of the sidereal and anomalistic months.”

The idea of considering an orbit as a Keplerian ellipse, the defining param-
eters of which vary with time, was introduced to astronomers via Horrocks’
lunar theory and would re-emerge in the latter half of the eighteenth century as
an extremely powerful technique for determining the perturbing gravitational
effects of one planet upon another.

The contributions of Kepler and Galileo

The period between Copernicus and Newton was a transitional one for math-
ematical astronomy. In the late sixteenth century, descriptions of the heavens
were, as they had been since the time of the ancient Greeks, purely geomet-
rical, but through the work of Kepler this began to change. Kepler’s attitudes

eccentricity to be the length of the projection of EC onto the line EA, i.e. |[EC|cos3$. It is not
clear whether Flamsteed misunderstood Horrocks’ mechanism or whether Horrocks himself
had actually done the same. Certainly, Flamsteed’s form for the eccentricity leads to simpler
calculations. For more on this issue, see Gaythorpe (1957) and Kollerstrom (2000), Chapter 7.
The idea of an apse oscillating about its mean position was not new; it was implicit in many of
the lunar theories that preceded Horrocks’. Ptolemy’s use of prosneusis had just such an effect,
for example, though the period of the oscillation was only half a synodic month (see p. 74).

In one anomalistic month, the Moon advances (see Table 1.1, p. 7)

(27.555/27.322) x 360° ~ 363° 4’ with respect to the stars and, hence, the mean apogee
advances by just over 3° per lunar revolution.
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to astronomical hypotheses were made clear in the Apologia (see p. 175) but
this was not read widely. He reiterated them in the Epitome of Copernican
Astronomy:

... physics is popularly deemed unnecessary for the astronomer, but truly it is in
the highest degree relevant to the purpose of this branch of philosophy, and cannot,
indeed, be dispensed with by the astronomer. For astronomers should not have
absolute freedom to think up anything they please without reason; on the contrary,
you should give causus probabiles for your hypotheses which you propose as the
true cause of the appearances, and thus establish in advance the principles of your
astronomy in a higher science, namely physics or metaphysics . . . .

The major obstacle in the way of this transition to a physical astronomy was
Aristotelian physics, which had become, since the Middle Ages, intertwined
with Christian cosmology.

Although many people were involved in shaping the changes that took place
during the seventeenth century, Kepler and Galileo stand out, but their contri-
butions were very different. From a mathematical point of view it is Kepler’s
achievements that are the most impressive, but it is certainly true that of the two,
Galileo is, and was, the more famous. Kepler’s talents were not recognizable so
easily to his contemporaries — his great discoveries were published alongside
his more fanciful speculations, and in order to use his theories you had to be
a highly competent mathematician. Also, when we look back on the events of
this period, we do so with the knowledge that Kepler was right in some things
but wrong in others, and we tend to ignore things such as his erroneous physical
theory or his mysticism, choosing instead to remember the phenomenal achieve-
ment of his three laws of planetary motion. This filter was not available to his
contemporaries and, although Kepler’s mathematical astronomy clearly had to
be taken seriously, it was not at all obvious that he had made the fundamental
breakthrough we now know he achieved.

Galileo, on the other hand, was a competent mathematician, but not one of
the great mathematical astronomers. His strength was his ability to use exper-
imental results to argue persuasively against traditional prejudices. During the
seventeenth century, there was a change in attitude in Europe toward the induc-
tive sciences, and Galileo was at the forefront of this movement. His work laid
the foundations on which Newton later would erect the subject of mathemati-
cal physics, and the fact that he clashed so publicly with the Roman Catholic
Church and was forced to recant his views has helped to elevate him to the
status of a martyr to science.

* KEPLER Epitome of Copernican Astronony. Quoted from Jardine (1984).
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Both men helped pave the way for what was to follow. Galileo’s attacks
on Aristotelianism demonstrated that the old physics was not sustainable, and
many then attempted to determine the form the new physics should take. The
increased accuracy of Kepler’s planetary astronomy helped to shift the debate
away from the Greek ideal of uniform circular motion and enabled others to
ask themselves what shape the planetary orbits actually are and how the planets
move round them.
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The universal theory of gravitation

The Cartesian vortex theory

When it comes to our Solar System, pretty much the whole of modern-day
predictive astronomy is based on the law of universal gravitation, introduced
by Isaac Newton. Newton’s work was the crowning achievement of a century
of investigations into the subject of mechanics, which began with the work
of Galileo. A detailed history of the development of dynamical ideas in the
seventeenth century is beyond the scope of this book, but we will discuss briefly
the main ideas and attitudes that shaped astronomical thought.l

By the mid seventeenth century, it was clear that the Ptolemaic universe,
with the Moon, Sun and planets orbiting a stationary Earth, did not correspond
to reality. Evidence suggested that the Earth was of a similar nature to the Moon
and the other planets, and Aristotelian explanations of planetary phenomena in
terms of natural motions were no longer acceptable. What was now required
was an explanation in terms of terrestrial physics, a subject that, with Aristotle
gone, was wide open. One such attempt was Kepler’s, and his ultimate conclu-
sions in the form of his laws of planetary motion were of immense signifi-
cance, but little attention was paid to the precise nature of his physics. Another
bold attempt was that of René Descartes, whose vortex theory was published
in 1644.

Whereas Kepler had been concerned with the technical details of planetary
astronomy, Descartes was interested in cosmology in a much broader sense.
Kepler was led to his discoveries by a study of the small irregularities in plane-
tary motions, but Descartes was led to his vortex theory by a consideration of the
structure of the Universe as a whole. He accepted the Copernican system, since
it explained the phenomena with the fewest assumptions, though he realized

' Fora thorough discussion of this topic, see Westfall (1971).
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that the same phenomena could be explained by a geoheliocentric universe. As
a predictive tool, the vortex theory was way behind Keplerian astronomy, but
it was immensely influential, particularly in The Netherlands and France, and
played a key role in the subsequent development of ideas about the mechanics
of the heavens.

The nature of the scientific method was a keen subject of debate in the
early seventeenth century. Galileo had set the ball rolling (so to speak) with
his insistence that mathematical theory was backed up by experiment, and in
1620, Francis Bacon, one of the most distinguished philosophers of science
during the Renaissance, published the New Organon in which he espoused a
general scientific philosophy that was based solely on experiment and research.”
Descartes” method, on the other hand, was rational rather than empirical. For
him, the relationship between science and metaphysics was crucial, and he based
his physics on metaphysical principles. He sought a primary self-evident axiom
from which everything else would follow by the application of mathematical
laws, and he found this in the famous proposition: ‘I think, therefore I am.” For
example, he used his method to prove the existence of God: since he (Descartes)
had ideas about perfection and infinity, and since the causes of these ideas
must be perfect and infinite, a perfect infinite being must exist. He stated his
opposition to the Baconian view very clearly in his Philosophical Principles
(1644): ‘I will explain the results by their causes, and not the causes by their
results.”’

In Cartesian physics, matter was equated with its geometrical form — in
other words, Descartes identified matter with the space it occupied. Neither
could exist in isolation, and so a vacuum (space without matter) was impossi-
ble. There thus had to be some substance that filled the heavens. Another con-
sequence of Descartes’ views on the nature of matter was that all phenomena
should be explicable in terms of geometry and motion. Apart from the supposed
interaction between mind and body, the only possible causal mechanism in the
Cartesian universe was impact; motion was the result of the action of matter on
matter.

Descartes worked on his system of the world between 1629 and 1633, but the
condemnation of Galileo deterred him from publishing. In his Method (1637)"
he included a summary of his work on the mechanics of the heavens, but the

> An organon is a system of logical or scientific rules, particularly that of Aristotle. The title thus

indicates that the new scientific method was to replace the old Aristotelian one. Bacon, who
rejected Copernicanism and underrated the importance of mathematics in science, was far less
s influential than Galileo (see, for example, Cushing (1998), pp. 22-4).
; Quoted from Pannekoek (1961). The Latin title was Principia philosophiae.
The full title of this work, a classic in philosophy, was Le discours de la méthod pour bien
conduire sa raison, et chercher la vérité dans les sciences, and its publication brought the
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definitive version of the vortex theory appeared in his Philosophical Principles.
His theory was an attempt to provide a general explanation of planetary motion.
As he put it:

I have not described in my Principles all the motions of each planet, but I have
supposed in general all those that the observers have found and I have attempted to
explain the causes.’

The fundamental idea of his theory was that the space between the planets was
filled with fluid matter containing a number of rotating vortices that carried
the planets around in their orbits. These vortices were of differing strengths,
e.g. a very powerful vortex was centred on the Sun, and this was responsible
primarily for the motion of the six planets, but then there were lesser vortices
centred on the Earth and Jupiter that accounted for the motions of their satellites.
These vortices exerted pressures on each other, resulting in slight distortions,
and these deviations from perfect circularity were the causes of the inequalities
in planetary motions. Descartes used the analogy of the motion of water to show
how such a mechanism could explain all the observed phenomena:

Let us suppose that the matter of the sky where the planets are, turns without
ceasing, as also a vortex at the centre of which is the sun, and that its parts which
are nearer the sun move more quickly than those which are further away, up to [the
distance of Saturn] and that all the planets (in whose number we henceforth include
the earth) remain always suspended between the same parts of this matter of the
sky; for by this alone and without employing other machines, we shall easily
understand all the things that we notice in them. For as in the winding of rivers
where the water folds back on itself, turning in circles, if some straws or other very
light bodies float amidst the water, we can see that it carries them and moves them
in circles with it; and even among these straws one can notice that there are often
some which also turn about their own centre; and that those which are closer to the
centre of the vortex which contains them make their revolution more quickly than
those which are more distant; and lastly that, although these vortices of water
design always to rotate in rings, they almost never describe entirely perfect circles,
and extend themselves sometimes more in length and sometimes more in width, so
that all parts of the circumference which they describe are not equally distant from
the centre; thus one can easily imagine that all the same things apply to the planets;
and it needs only this to explain all their phenomena.’

author instant fame. It contained three appendices, each containing an application of Descartes’
method. One of these was entitled Geometry and contained his ideas on coordinate geometry
and algebra. This was the only work Descartes ever published on mathematics, but it had a huge
influence. The association of algebraic equations with curves and surfaces was an essential step
in the invention of the calculus later in the seventeenth century. Another of the appendices was
on dioptrics, and in this, Descartes extended Kepler’s laws on lenses and published, for the first
s time, the correct law of refraction — Snell’s law.
Quoted from Aiton (1972). 6 Quoted from Aiton (1972)
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Though he was not entirely consistent on the matter, Descartes thought that
the axial motion of the Earth and of the other heavenly bodies was simply a
consequence of the way they were created. Once set in motion, they continued
in this rotating state and, although they would be slowed down by their interac-
tion with the surrounding fluid, this retardation would be imperceptibly small.
Descartes used the analogy of a child’s top to illustrate his point:

... without any noticeable diminution, because the larger a body is, the longer also

can it retain the agitation which has been impressed on it, and the duration of five or
six thousand years that the world has existed, compared with the size of a planet, is
not so much as a minute compared with the smallness of a top.7

To Descartes, uniform motion in a straight line was a state in the same way
that rest was a state. A cause was required to change a state and, hence, he
was led to the concept of rectilinear inertia: unless something acts to change
it, a body will remain at rest or continue in uniform motion in a straight line.
Formally, this is equivalent to what has become known as Newton’s first law
of motion, but it meant something rather different to Descartes. In his system,
inertial motion did not happen, since objects were continually subject to the
impacts of other bodies, a void being impossible. Thus, this inertia represented
a tendency to move in a straight line. A crucial corollary was that an object
in circular motion was forever trying to fly off at a tangent (this tendency was
known as the centrifugal force) and so some external force was required to pull
it toward the centre.

Following Galileo’s pioneering work, the concept of inertia had been studied
actively in the early seventeenth century by men such as Evangelista Torricelli.
Descartes’ ideas about inertia corresponded, by and large, with experience,
and when he published his statement of rectilinear inertia in 1644, it was a
commonly held belief. Once one accepts that uniform motion in a straight
line persists unless some external force acts, it seems only a small step to the
realization that the effect of a force is to produce a change in velocity — an
acceleration — but this conceptual breakthrough was slow in coming.

Another fundamental principle in Cartesian mechanics, although this time
an erroneous one, was the idea of the conservation of motion. Descartes per-
ceived motion as possessing its own independent existence so that it could pass
from one object to another during an impact. Motion was caused by God, and
since God was immutable, the quantity of motion should remain unchanged.
Unfortunately for Descartes, he quantified motion in terms of the product of size
and speed and, hence, in terms of a scalar, rather than a vector, quantity. Since
the Cartesian universe was driven by the continual impacts between objects,

! Quoted from Aiton (1989).
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Descartes applied his laws of motion to derive a theory of collisions, but his
incorrect conservation law led to an unsatisfactory theory.8

The vortex theory, as developed by Descartes, was qualitative in nature;
it had to be, since the mathematical methods required to study fluid vortices
had not been invented yet. The theory provided a psychologically satisfying
explanation of celestial phenomena and certainly was ingenious. However, it
was riddled with inconsistencies and could not (and did not pretend to) compete
with contemporary quantitative mathematical astronomy. Although one of the
system’s weaknesses was the fact that fluid motion was understood poorly in
Descartes’ time, this also had the beneficial effect that it was hard for anybody
else to refute Cartesian ideas. For half a century, the mechanical philosophy of
Descartes replaced the old Aristotelian physics as the accepted wisdom of the
vast majority. It was the awesome predictive power of the Newtonian theory of
gravitation that would lead eventually to its demise, and Descartes’ theory was
later much ridiculed, particularly in England. In his famous History of Physical
Astronomy, Robert Grant wrote in 1852:

No doubt, we think, can exist that this celebrated fiction exercised a most
pernicious influence in retarding the progress of sound mechanical ideas relative to
celestial physics. Like the theory of solid orbs, it at length utterly disappeared
before the advancing light of true science, after continuing for nearly a century to
indulge its adherents with the miserable delusion that it revealed to them the whole
secret of the mechanism of the universe.’

Pre-Newtonian conceptions of gravity

During the seventeenth century, science began to organize itself. In particular,
scientific endeavour in England and France began to revolve around the activi-
ties of two influential groups: the Royal Society in England and the Academy
of Science in France. The Royal Society was founded in 1662, and soon after its
formation Charles II asked about the possibility of using astronomical observa-
tions to aid navigation, a subject of vital importance to a seafaring nation like
Britain. The Royal Society recommended that an observatory be created, and
the purpose-built Royal Observatory was founded at Greenwich in 1675 with
John Flamsteed as the first Astronomer Royal. While this sounds rather grand,
actually the whole thing was done on the cheap, and Flamsteed had great diffi-
culty in acquiring the necessary observing instruments. In 1666, the Academy
of Science was formed in France and the Paris Observatory founded a year later.

s See, for example, Clarke (1977). 9 Grant (1966), p. 19.



244 The universal theory of gravitation

One of the topics that occupied the minds of many of the members of these
learned societies was the nature of gravity. At the beginning of the seventeenth
century, many natural philosophers looked to the magnetical philosophy of
William Gilbert for the source of a new universal physics with which to de-
scribe the Copernican heliocentric universe; * Gilbert’s ideas influenced Kepler
and Galileo as well as many other astronomers. By about 1650, however, the
popularity of magnetic astronomy had declined in favour of a mechanistic ap-
proach, though in England a residual influence remained. Christopher Wren,
for example, gave a lecture in 1657 in which he held Gilbert up as an example
of a positive influence on astronomy, as opposed to the negative approach of
Galileo!

One of the leading proponents of Gilbert’s philosophy in England was John
Wilkins who, in his Discovery of a World in the Moon (1640), described
gravity as

... arespective mutual desire of union, whereby condensed bodies, when they

come within the sphere of their own vigour, do naturally apply themselves, one to
another by attraction or coition. "

Following Wilkins, both Wren and Robert Hooke' utilized ideas that were a
mixture of the magnetic philosophy and the increasingly popular mechanistic
interpretations of the Cartesians. These ideas were interwoven in the discussions
between the two men concerning the comet of 1664. In his Cometa of 1678,
Hooke wrote:

... I suppose the gravitating power of the Sun in the centre of this part of the
Heaven in which we are, hath an attractive power upon all the bodies of the Planets,
and of the Earth that move about it, and that each of those again have a respect
answerable, whereby they may be said to attract that sun in the same manner as the
Load-stone hath to Iron, and the Iron hath to the Load-stone."

But just as a magnet has no effect on certain materials, Hooke believed that
some bodies would not be influenced by gravitational attraction.

In Europe, Descartes’ influence was very strong; his popularity snow-
balled and his ideas came to dominate seventeenth-century scientific thought.
Followers included Henricus Regius, Jacques Rohault, Pierre Sylvain Régis,
and Nicolas Malebranche. Regius tried to separate the physics from the meta-
physics in Descartes’ system, and in so doing was disowned by Descartes for

" Ideas based on magnetism were used also to support the geocentric world view (see Baldwin
" (1985)).
o Quoted from Bennett (1989).
Hooke was appointed by the Royal Society (on a meagre wage) to demonstrate a new and
s interesting experiment at every session.
Quoted from Bennett (1989).
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whom this linkage was fundamental. Others followed Regius’ lead, however,
notably Rohault, whose Le traité de physique (1671) became the standard work
on Cartesian physics. Régis also tended to view physics as an empirical science
and advocated the achievement of consistency in physical theories. Whereas
others argued that a particular theory could be developed for a specific problem
and that all these theories could be considered in isolation, Régis argued that
all the different theories should be consistent with one another.

The first person to try to advance Cartesian physics beyond the level achieved
by Descartes was Malebranche. He did not believe that motion could be trans-
ferred from one object to another through a collision, but instead fell back on
the doctrine of occasionalism in which the impact was simply an occasion for
God to make the change. This difference was purely one of metaphysics, but
he effected also a change in Cartesian physics. In Descartes’ cosmology there
were three elements: luminous, transparent, and opaque. Luminous matter con-
sisted of fine particles that made up the stars, whereas the coarse particles that
made up the body of the Earth and planets were opaque. The space between
the stars and planets — the so-called subtle matter — was made up of globules,
or boules, of transparent material. Malebranche replaced these boules by small
elastic vortices, and through this device managed to provide an explanation for
the phenomena of heat and light.

The Cartesians spent a great deal of time discussing the nature and cause
of terrestrial gravitation. Both Copernicus and Galileo adhered to the Platonic
viewpoint that gravity was a natural inclination of bodies to move toward each
other. For example, Copernicus believed that the spherical shape of the heavenly
bodies was due to the mutual attraction of their parts:

For my part I believe that gravity is nothing but a certain natural desire, which the
divine providence of the Creator of all things has implanted in parts, to gather as a
unity and a whole by combining in the form of a globe. This impulse is present, we
may suppose, also in the sun, the moon, and the other brilliant planets, so that
through its operation they remain in that spherical shape which they display.14

To Kepler, gravity — which he compared to magnetism — was a tendency for
like bodies to approach each other. He took the tides as evidence that the Moon
exerted an attractive force on the Earth, but this gravity was not related to orbital
motion. The Sun did not attract the planets — it pushed them around.

It was Descartes who turned Kepler’s ideas into a theory of universal grav-
itation, something that was a natural consequence of the collisions between
bodies. In the Cartesian system, gravity was perceived as being analogous to
the tendency of floating bodies to move toward the centre of whirlpools, and

14 .
COPERNICUS On the Revolutions, 1, 9.
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Descartes described a mechanism by which this could occur. This mechanism
had to account for the fact that bodies were attracted toward the centre of the
Earth, whereas the whirlpool analogy suggested that they should move toward
the axis of the vortex and, like much of the Cartesian theory, it contained incon-
sistencies. Descartes assumed that terrestrial gravity diminished as one moved
away from the Earth sufficiently rapidly so that it did not affect the Moon or
planets.

The fact that the physical cause for the motion of the planets lay in the
Sun had been Kepler’s idea, and he had also assumed, after the discovery
of Jupiter’s moons, that the force responsible for their motion was inherent
in Jupiter. Similarly, Descartes attributed the motion of planetary satellites to
small vortices centred on those planets, and others were of a like mind. John
Wallis in 1666 wrote:

As the sun by its motion about its own axis, is with good reason judged to be the
physical cause of the primary planets moving about it; so there is the like reason to
believe, that Jupiter and Sarurn moving about their axes, are the physical cause of
their satellites moving about them . . . 8

In a work on the moons of Jupiter (also published in 1666), Giovanni Borelli ’
suggested that the orbits of the satellites were caused by a balance between the
centrifugal force of the Moons (i.e. the tendency to move away from Jupiter)
and some force pulling it toward the planet. Added to this was a force acting
tangentially that pushed the planets around in their orbits. Borelli believed that
by studying the Jovian system, general conclusions about the Solar System
could be drawn.

We shall assume, therefore, that the planet tends to approach the sun, while at the
same time it acquires the impetus to move away from the solar centre through the
impetus of circular motion: then, so long as the opposing forces remain equal (the
one is in fact compensated by the other), [the planet] cannot come closer to, nor
move further away from, the sun, and must remain within a certain, fixed space;
consequently, the planet will appear to be in equilibrium and ﬂoating.17

Of course, if this were an exact balance, circular motion would result — which
was not observed — but Borelli assumed that, in fact, there was a continuous dis-
equilibrium in which the two opposing forces alternately dominated each other,
resulting in elliptical orbits. The force pulling the moons of Jupiter toward the

" Quoted from Wilson (1970).
Borelli was one of the most influential members of the Accademia del Cimento, formed in
Florence in 1657 by a group of Galileo’s followers. The Academy was forced to close only 10
years later under pressure from the Church. Details of Borelli’s celestial mechanics can be

. found in Koyré (1973) and a modern view of Borelli’s work is given in Meli (1998).
Quoted from Koyré (1973).
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central planet (and by analogy the force that pulled the planets toward the Sun)
was inherent in the orbiting body and, hence, constant, and Borelli assumed
that the centrifugal force increased as the planet approached the Sun and di-
minished as it moved further away. Hence, any disturbance to a perfect circular
orbit would result in an oscillation about that orbit with the centrifugal tendency
alternately being less than, and greater than, the gravitational attraction.

The underlying cause of planetary motion in Borelli’s system was as it had
been for Kepler, the rotation of the Sun. The light emanating from the Sun rotated
with the Sun and pushed the planets around in their orbits. Borelli differed from
Kepler in that the effect of the rays was cumulative and he believed that there
was a tendency for a planet to retain the speed imparted by the solar rays. It
was not clear what limited the planet’s speed in Borelli’s system, nor why the
continued action of the rays was necessary.Ix Borelli’s ideas necessarily were
vague because he did not know how the centrifugal force varied as a function of
the speed of the satellite and the distance from the planet; this was discovered
by Christiaan Huygens.]9

Cartesian physics — and in particular the treatment of gravitation — advanced
to a new level with the work of Huygens, who incorporated a quantitative
element into the theory. Crucial to his success was his correct appreciation of
centrifugal force. Huygens’ solution was first published in his great work on
pendulum clocks, the Horologium Oscillatorium (1673), but in 1669 Huygens
had sent his result in the form of an anagram to Henry Oldenburg, the secretary
of the Royal Society, to ensure his claim to priority:20

If a body revolves in a circle with the time that a pendulum of equal length with
the radius of the circle makes a double swing, then the centrifugal force of the
body will be equal to its weight.”

Since, in modern terminology, the period of a pendulum of length r is 2w /7 /g
(g being the acceleration due to gravity), a body moving so that it went round a
circle of radius r in this time would have speed v = /gr. Huygens’ assertion is

** The fact that rays of light from the Sun played a role in the motion of the planets suggests that
Borelli originally developed his ideas in the context of planetary motion and transferred them
subsequently to the Jovian system (where he had to assume the presence of rays emanating
from the planet) so as to conform to the ban on the teaching of Copernicanism (see Armitage
(1950)).

v Huygens was one of the great scientists of the seventeenth century and wrote on many subjects
including mathematics and astronomy. He invented the pendulum clock in 1656, and around
the same time discovered the nature of Saturn’s curious shape. His contributions to mechanics,
which are less well known than his contributions in other fields, are discussed in Gabbey
(1980).

" In fact, Newton independently arrived at the same result in 1665 (see p. 253 below).

Quoted from Hall and Boas Hall (1969).
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Fig. 8.1. Huygens’ derivation of the form of the centrifugal force.

then equivalent to saying that the centrifugal force F(v, r) satisfies the equation
F(J/gr,r) =mg, ie. F = mv?/r. Of course, Huygens could not express his
result like this because he did not have the concept of mass as opposed to
weight (this was one of Newton’s many contributions). A simplified version of
Huygens’ derivation is illustrated in Figure 8.1.” Imagine that a particle and
an observer travel around a circle, centred at C with radius r, and that at some
instant they are at A, moving in the direction AB with speed v. In a time 7, the
particle moves around the circle to D, where the length of the arc AD = vt,
but if allowed to move freely, the particle would move along the tangent to B
where |AB| = vt. The points C, D and B lie on an approximate straight line,
the approximation being better the smaller the value of ¢ that we take. Thus,
the particle would move away from the observer by a distance | D B| = x and
Huygens used this distance to measure the strength of the tendency to move off
on a tangent. Now |BC|> = |AB|? + |AC|? and so, in modern notation,

W22\ 2 V272
r—}—x:\/m:r(l—l-—z) %r(l%——z),
r 2r

from which we obtain x = v?¢?/2r. Galileo had shown previously that a uni-
formly accelerated body moves according to the formula s = at?/2, where
s is the distance travelled and a is the acceleration, and so Huygens could
conclude that the centrifugal acceleration — though he does not use the word
‘acceleration’ —is v2/r.

Huygens’ theory of centrifugal force was extremely significant. It was the
final nail in the coffin of the idea of circular inertia that had dominated thought
for so long. It made clear that uniform circular motion required the constant
action of a force to balance the centrifugal force. Huygens was a Cartesian,

* This derivation did not become known until after Huygens’ death (see Dijksterhuis (1961) and
Jammer (1957) for more details).
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and so any such force had to be caused by a mechanism based on impact,
and he devised just such a mechanism to explain gravity. Note that Huygens
was trying to explain gravity via circular motion; Newton later would explain
circular orbits from a correct understanding of gravity.

The basis for Huygens’ idea, which had already been espoused by Descartes,
was that the centrifugal tendency of the subtle matter that was rotating around the
Earth caused the heavier opaque matter to be forced inwards toward the centre
of the vortex. One problem with this idea — which has already been noted — was
that gravity acted toward the centre of the Earth, whereas the rotation of the fluid
vortex was around the axis of rotation of the Earth. Huygens thus supposed that
there was actually a spherical vortex, with particles of the subtle matter moving
about the Earth in all possible directions. He supposed that heavy bodies did not
rotate around the Earth like the fluid making up the vortex of the Earth because
there was insufficient time for the many tiny impulsions that they received from
the fluid matter to cause any significant horizontal motion. Heavy bodies thus
possessed no centrifugal force relative to the Earth, unlike the subtle matter.
In Huygens’ theory, the weight of a body was equal to the centrifugal force of
a quantity of the surrounding fluid, equal in volume to that of the body, and
applying his quantitative theory he came to the conclusion that the fluid matter
must be moving seventeen times faster than the speed of a point on the equator
of the Earth due to the diurnal rotation.

A consequence of Huygens’ theory was that the daily rotation of the Earth
must reduce the effect of gravity. Since the centrifugal force was proportional
to the square of the speed, his calculation indicated that the effect of gravity at
the equator should be reduced by a factor of 1/17> = 1/289. He then used this
value to show that a pendulum clock that worked accurately at one of the poles
would run slow by just over 2% min per day if used at the equator. Around this
time, men were experimenting by taking pendulum clocks to different parts of
the world, and the results of their experiments did suggest that the gravitational
force was not constant, the data showing partial agreement with Huygens’
result.”

Another consequence of the daily rotation of the Earth in Huygens’ theory
was a deviation of a plumb line from the vertical. At the latitude of Paris, this
should have amounted to about 6’ of arc, but such a deviation was not observed.
This led Huygens to believe that the Earth was not a perfect sphere.

» In particular, Jean Richer travelled to Cayenne which is on the coast of South America, near
the equator, to make observations that would help in the determination of the solar parallax. He
took with him a pendulum that was designed to beat seconds in Paris and found that he had to
shorten it by about 28 mm in order for it to keep time in Cayenne (Chapin (1995)). Richer’s
trip is described in detail by Olmsted (1942).
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This deviation is contrary to what has always been supposed to be a very certain
truth, namely, that the cord stretched by the plumb is directed straight toward the
centre of the earth ... Therefore, looking northward, should not the level line
visibly descend below the horizon? This, however, has never been perceived and
surely does not take place. And the reason for this, which is another paradox, is that
the earth is not a sphere at all but is flattened at the two poles, nearly as an ellipse
turning about its smaller axis would produce. This is due to the daily motion of the
earth and is a necessary consequence of the deviation of the plumb line mentioned
above. Because bodies by their weight descend parallel to the direction of this line,
the surface of a fluid must put itself perpendicular to the plumb line, since else it
would stream farther downward.”

Since gravity was caused by the vortices of fluid outside the Earth, Huygens
reasoned that within the Earth its effect was constant. He computed the ratio of
the polar and equatorial diameters to be 577 : 578 on this assumption.

Isaac Newton and the Principia

It often is remarked that Galileo died and Newton was born in 1642, but this is
not strictly true. At the time, Italy used the Gregorian calendar, but England was
still using the Julian calendar and so, when Newton was born on Christmas Day
1642 in England, it was already 1643 in Italy. Of course, this takes nothing away
from the interesting proximity between the death of the founder of the science
of mechanics and the birth of the man who would turn Galileo’s groundwork
into the most successful scientific theory of all time. The lives of these two great
intellectual giants spanned the years 1564—1727, a period of profound change
in scientific attitudes often referred to as the ‘Scientific Revolution.”

Newton had an unremarkable education as a boy. He went to Cambridge in
1661 and came into contact with the mathematics and natural philosophy of
the day. He read widely, learning mathematics from the works of Descartes and
Wallis, and studied books on a wide range of subjects, mixing a flair for physics
and optics with more unorthodox interests in alchemy and biblical chronology.

* HuvGENs Le discours de la cause de la pesanteur (Discourse on the Cause of Gravity), 1690
(translation from Pannekoek (1961), p. 269). This work was published as an appendix to his Le
traité de la lumiere (Treatise on Light), but most of its contents had been presented to the
Academy of Science in Paris as early as 1669; for more details, see Snelders (1980). However,
the quantitative analysis of the shape of the Earth was performed after the publication of
Newton’s Principia in 1687 (see Todhunter (1962)).

A great deal has been written about Newton since his death in 1727 (Hall (1999) lists thirty-six
major biographies). The definitive modern biography of Newton is Westfall (1980) which also
contains an essay detailing other bibliographic information. A shortened version, with much of
the technical content of the full biography omitted and therefore accessible to a wider
audience, is Westfall (1993).

25
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The rapid pace at which he acquired knowledge (and he was primarily self-
taught) is indicated by the fact that he succeeded Isaac Barrow as Lucasian
Professor of Mathematics at Cambridge in 1669.

Newton began to think about celestial mechanics in his early twenties, pos-
sibly prompted by the appearance of the comet of 1664. It seems likely that he
learned of the Ptolemaic and Copernican world-views from Galileo’s Dialogue
and from works by Gassendi. He also familiarized himself thoroughly with
the Philosophical Principles of Descartes, from which he learned the principle
of inertia.” Entries in a student notebook begun in 1661 show that he read
Streete’s Astronomia Carolina and that he was aware of Kepler’s first and third
laws, but there is no evidence that he ever read Kepler’s New Astronomy. He
seems to have had confidence in the accuracy of the third law, but not the first.”
As to the second law, Newton fell in with his contemporaries. Streete’s work
did not contain any direct statement of the area law but, instead, discussed the
methods of Boulliau and Ward for working out the true anomaly as a function
of time. Newton worked with these and also produced a few alternatives of
his own — there is no mention of Kepler’s second law in any of his writings
until 1684.

It did not take long before Newton was making profound and original con-
tributions of his own. He realized early on that Aristotle’s attempt at under-
standing motion was inadequate, and began to develop his own ideas based
on those of Galileo and Descartes. In his early work on collisions, he realized
that Descartes’ idea of conservation of motion was flawed, because it failed to
take into account the direction of motion. Newton thus was led to the idea of
the conservation of momentum — where momentum is mass x velocity and,
hence, a vector quantity — though he did not express it this way since he had not
at that time achieved a satisfactory understanding of the concept of mass, and
the language of vectors was not to be invented until the nineteenth century. By
the use of this modified version of Descartes’ conservation law, he managed to
derive the correct rules for both elastic and inelastic collisions.

As far as planetary motion was concerned, Newton again took the lead from
Descartes. In the second half of the seventeenth century, the vortex theory
was the only widely supported physical explanation of celestial motion, and
Newton seems to have adhered to it, just as did most of his contemporaries.
For example, in notes on the endpapers of Wing’s Astronomia Britanica, he

* A discussion of all the works that influenced Newton’s early thoughts on astronomy can be
found in Whiteside (1970a). Newton’s very early astronomical studies are described in

» McGuire and Tamny (1985).
Whiteside (1964).



252 The universal theory of gravitation

b
c 4 4

D

Fig. 8.2. Newton’s derivation of the form of the centrifugal force.

attributed the physical cause of the irregularities in the motion of the Moon
around the Earth to the pressure of the vortex of the Sun on that of the Earth.

The traditional story that Newton first thought of universal gravitation in
1666 after observing an apple falling from a tree while at home in Lincolnshire
to escape the plague that had descended on Cambridge is, to say the least,
misleading. There is no evidence that Newton considered the mutual attraction
of heavenly bodies before 1679, or that the actual law of universal gravitation
occurred to him before 1684. The theory of gravity that Newton published in
1687 was not simply a flash of inspiration — it was the result of a great deal of
intellectual effort spent grappling with the fundamental principles of dynamics.
He did, however, consider the possibility that the gravity of the Earth might
extend as far as the Moon, and this may well have been inspired by the fall of
an apple, but the terrestrial gravity he was reflecting upon was not gravity as
eventually he understood it.”

The key ingredient in the development of Newton’s ideas that allowed him
to consider the effect of gravity on the Moon came from his study of uniform
circular motion. Following Descartes, he assumed that any body moving in
such a manner had a centrifugal tendency away from the centre of motion that
caused the body continually to try to move off on a tangent and, like Huygens,
he looked for a quantitative measure of this ‘force’. To get a handle on things,
Newton considered a body that was moving around a circular path of radius
r on the inside of a spherical surface. Then he approximated the situation by
assuming that the body moved around the inscribed square ABC D shown in
Figure 8.2 at a constant speed v, bouncing off the sphere at each of the vertices.
At each impact, the component of the motion perpendicular to the tangent is

** For an account of the origin of the anecdote concerning the apple, see Westfall (1980), p. 154.
A detailed analysis of the claim that Newton did not believe in universal gravitation prior to
1684 is given in Wilson (1970).
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reversed, which implies a change in the quantity of motion of 2mv cos /4.
The total change in the quantity of motion over the four impacts, divided by the
quantity of motion the body possesses (i.e. mv), is thus 8 cos 7/ 4.” The length
of the perimeter of the square ABC D is clearly 87 cos 7 /4, and so we have the
result that

total change in quantity of motion  perimeter of square

quantity of motion of body ~ radius of circle

Newton realized that this result would hold for any inscribed regular polygon,
and we can demonstrate this as follows. Half the interior angle of a polygon with
n sides is w/2 — 7 /n (this plays the role of the marked angle in the diagram)
and so at each impact the change in the component of motion perpendicular
to the tangent is 2mv cos(;r/2 — 7 /n), which must be multiplied by n to get
the total change as the body moves around its polygonal path. The perimeter
of the polygon is 2nr cos(r /2 — m/n) and so the result stated at the end of the
previous paragraph extends to this new situation. If it is true for any regular
polygon, Newton could proceed to the limit of a polygon with an infinite number
of sides, i.e. the circle itself. In this way, he established that the total change in
the quantity of motion of the body over the course of its circular obit is 2w muv.
Then he argued that the magnitude of the instantaneous force acting on the
body, f, must be this total change divided by the period, and in this way arrived
at the correct form for the centrifugal force,

2mrmv mv?

f= - —

2nr/v r

The first use to which he put his new formula was the accurate det