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Abstract

We go through the many considerations involved in fitting a model
to data, using as an example the fit of a straight line to a set of points
in a two-dimensional plane. Standard weighted least-squares fitting
is only appropriate when there is a dimension along which the data
points have negligible uncertainties, and another along which all the
uncertainties can be described by Gaussians of known variance; these
conditions are rarely met in practice. We consider cases of general,
heterogeneous, and arbitrarily covariant two-dimensional uncertain-
ties, and situations in which there are bad data (large outliers), un-
known uncertainties, and unknown but expected intrinsic scatter in
the linear relationship being fit. Above all we emphasize the impor-
tance of having a “generative model” for the data, even an approx-
imate one. Once there is a generative model, the subsequent fitting
is non-arbitrary because the model permits direct computation of the
likelihood of the parameters or the posterior probability distribution.
Construction of a posterior probability distribution is indispensible if
there are “nuisance parameters” to marginalize away.

It is conventional to begin any scientific document with an introduction
that explains why the subject matter is important. Let us break with tra-
dition and observe that in almost all cases in which scientists fit a straight
line to their data, they are doing something that is simultaneously wrong
and unnecessary. It is wrong because circumstances in which a set of two

∗The notes begin on page 39, including the license1 and the acknowledgements2.
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2 Fitting a straight line to data

dimensional measurements—outputs from an observation, experiment, or
calculation—are truly drawn from a narrow, linear relationship is exceed-
ingly rare. Indeed, almost any transformation of coordinates renders a truly
linear relationship non-linear. Furthermore, even if a relationship looks lin-
ear, unless there is a confidently held theoretical reason to believe that the
data are generated from a linear relationship, it probably isn’t linear in detail;
in these cases fitting with a linear model can introduce substantial system-
atic error, or generate apparent inconsistencies among experiments that are
intrinsically consistent.

Even if the investigator doesn’t care that the fit is wrong, it is likely to be
unnecessary. Why? Because it is rare that, given a complicated observation,
experiment, or calculation, the important result of that work to be commu-
nicated forward in the literature and seminars is the slope and intercept of
a best-fit line! Usually the full distribution of data is much more rich, in-
formative, and important than any simple metrics made by fitting an overly
simple model.

That said, it must be admitted that one of the most effective ways to
communicate scientific results is with catchy punchlines and compact, ap-
proximate representations, even when those are unjustified and unnecessary.
It can also sometimes be useful to fit a simple model to predict new data,
given existing data, even in the absence of a physical justification for the fit.3

For these reasons—and the reason that in rare cases the fit is justifiable and
essential—the problem of fitting a line to data comes up very frequently in
the life of a scientist.

It is a miracle with which we hope everyone reading this is familiar that
if you have a set of two-dimensional points (x, y) that depart from a per-
fect, narrow, straight line y = mx + b only by the addition of Gaussian-
distributed noise of known amplitudes in the y direction only, then the
maximum-likelihood or best-fit line for the points has a slope m and intercept
b that can be obtained justifiably by a perfectly linear matrix-algebra oper-
ation known as “weighted linear least-square fitting”. This miracle deserves
contemplation.

Once any of the input assumptions is violated (and note there are many
input assumptions), all bets are off, and there are no consensus methods
used by scientists across disciplines. Indeed, there is a large literature that
implies that the violation of the assumptions opens up to the investigator a
wide range of possible options with little but aesthetics to distinguish them!
Most of these methods of “linear regression” (a term we avoid) performed
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in science are either unjustifiable or else unjustified in almost all situations
in which they are used.4 Perhaps because of this plethora of options, or
perhaps because there is no agreed-upon bible or cookbook to turn to, or
perhaps because most investigators would rather make some stuff up that
works “good enough” under deadline, or perhaps because many realize, deep
down, that much fitting is really unnecessary anyway, there are some egre-
gious procedures and associated errors and absurdities in the literature.5

When an investigator cites, relies upon, or transmits a best-fit slope or in-
tercept reported in the literature, he or she may be propagating more noise
than signal.

It is one of the objectives of this document to promote an understanding
that if the data can be modeled statistically there is little arbitrariness. It
is another objective to promote consensus; when the choice of method is not
arbitrary, consensus will emerge automatically. We present below simple,
straightforward, comprehensible, and—above all—justifiable methods for fit-
ting a straight line to data with general, non-trivial, and uncertain properties.

This document is part polemic (though we have tried to keep most of
the polemic in the notes), part attempt at establishing standards, and part
crib sheet for our own future re-use. We apologize in advance for some
astrophysics bias and failure to review basic ideas of linear algebra, function
optimization, and practical statistics. Very good reviews of the latter exist
in abundance.6 We also apologize for not reviewing the literature; this is
a cheat-sheet not a survey. Our focus is on the specific problems of linear
fitting that we so often face; the general ideas appear in the context of these
concrete and relatively realistic example problems. The reader is encouraged
to do the Exercises; many of these ask you to produce plots which can be
compared with the Figures.

1 Standard practice

You have a set of N > 2 points (xi, yi), with known Gaussian uncertainties
σyi in the y direction, and no uncertainty at all (that is, perfect knowledge)
in the x direction. You want to find the function f(x) of the form

f(x) = mx+ b , (1)

where m is the slope and b is the intercept, that best fits the points. What is
meant by the term “best fit” is, of course, very important; we are making a
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choice here to which we will return. For now, we describe standard practice:
Construct the matrices

Y =


y1
y2
· · ·
yN

 , (2)

A =


1 x1
1 x2
· · ·

1 xN

 , (3)

C =


σ2
y1 0 · · · 0
0 σ2

y2 · · · 0
· · ·

0 0 · · · σ2
yN

 , (4)

where one might call Y a “vector”, and the covariance matrix C could be
generalized to the non-diagonal case in which there are covariances among the
uncertainties of the different points. The best-fit values for the parameters
m and b are just the components of a column vector X found by[

b
m

]
= X =

[
A>C−1A

]−1 [
A>C−1 Y

]
. (5)

This is actually the simplest thing that can be written down that is linear,
obeys matrix multiplication rules, and has the right relative sensitivity to
data of different statistical significance. It is not just the simplest thing; it is
the correct thing, when the assumptions hold.7 It can be justified in one of
several ways; the linear algebra justification starts by noting that you want
to solve the equation

Y = AX , (6)

but you can’t because that equation is over-constrained. So you weight ev-
erything with the inverse of the covariance matrix (as you would if you were
doing, say, a weighted average), and then left-multiply everything by A>

to reduce the dimensionality, and then equation (5) is the solution of that
reduced-dimensionality equation.

This procedure is not arbitrary; it minimizes an objective function8 χ2

(“chi-squared”), which is the total squared error, scaled by the uncertainties,
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or

χ2 =
N∑
i=1

[yi − f(xi)]
2

σ2
yi

≡ [Y −AX]>C−1 [Y −AX] , (7)

that is, equation (5) yields the values for m and b that minimize χ2. Con-
ceptually, χ2 is like a metric distance in the data space.9 This, of course, is
only one possible meaning of the phrase “best fit”; that issue is addressed
more below.

When the uncertainties are Gaussian and their variances σyi are cor-

rectly estimated, the matrix
[
A>C−1A

]−1
that appears in equation (5) is

just the covariance matrix (Gaussian uncertainty—uncertainty not error10—
variances on the diagonal, covariances off the diagonal) for the parameters
in X. We will have more to say about this in Section 4.

Exercise 1: Using the standard linear algebra method of this Section, fit
the straight line y = mx + b to the x, y, and σy values for data points 5
through 20 in Table 1 on page 6. That is, ignore the first four data points,
and also ignore the columns for σx and ρxy. Make a plot showing the points,
their uncertainties, and the best-fit line. Your plot should end up looking
like Figure 1. What is the standard uncertainty variance σ2

m on the slope of
the line?

Exercise 2: Repeat Exercise 1 but for all the data points in Table 1 on
page 6. Your plot should end up looking like Figure 2. What is the standard
uncertainty variance σ2

m on the slope of the line? Is there anything you don’t
like about the result? Is there anything different about the new points you
have included beyond those used in Exercise 1?

Exercise 3: Generalize the method of this Section to fit a general quadratic
(second order) relationship. Add another column to matrix A containing the
values x2i , and another element to vector X (call it q). Then re-do Exercise 1
but fitting for and plotting the best quadratic relationship

g(x) = q x2 +mx+ b . (8)

Your plot should end up looking like Figure 3.
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Table 1.

ID x y σy σx ρxy

1 201 592 61 9 -0.84
2 244 401 25 4 0.31
3 47 583 38 11 0.64
4 287 402 15 7 -0.27
5 203 495 21 5 -0.33
6 58 173 15 9 0.67
7 210 479 27 4 -0.02
8 202 504 14 4 -0.05
9 198 510 30 11 -0.84

10 158 416 16 7 -0.69
11 165 393 14 5 0.30
12 201 442 25 5 -0.46
13 157 317 52 5 -0.03
14 131 311 16 6 0.50
15 166 400 34 6 0.73
16 160 337 31 5 -0.52
17 186 423 42 9 0.90
18 125 334 26 8 0.40
19 218 533 16 6 -0.78
20 146 344 22 5 -0.56

Note. — The full uncertainty
covariance matrix for each data
point is given by[

σ2
x ρxyσxσy

ρxyσxσy σ2
y

]
.
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y = (2.24± 0.11) x+ (34± 18)

Figure 1.— Partial solution to Exercise 1: The standard weighted least-
square fit.
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y = (1.08± 0.08) x+ (213± 14)

Figure 2.— Partial solution to Exercise 2: The standard weighted least-
square fit but now on a larger data set.
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y = (0.0023± 0.0020) x2 + (1.60± 0.58) x+ (73± 39)

Figure 3.— Partial solution to Exercise 3: The standard weighted least-
square fit but now with a second-order (quadratic) model.

2 The objective function

A scientist’s justification of equation (5) cannot appeal purely to abstract
ideas of linear algebra, but must originate from the scientific question at hand.
Here and in what follows, we will advocate that the only reliable procedure
is to use all one’s knowledge about the problem to construct a (preferably)
justified, (necessarily) scalar (or, at a minimum, one-dimensional), objec-
tive function that represents monotonically the quality of the fit.11 In this
framework, fitting anything to anything involves a scientific question about
the objective function representing “goodness of fit” and then a separate and
subsequent engineering question about how to find the optimum and, possi-
bly, the posterior probability distribution function around that optimum.12

Note that in the previous Section we did not proceed according to these rules;
indeed the procedure was introduced prior to the objective function, and the
objective function was not justified.

In principle, there are many choices for objective function. But the only
procedure that is truly justified—in the sense that it leads to interpretable
probabilistic inference, is to make a generative model for the data. A gener-
ative model is a parameterized, quantitative description of a statistical pro-



2. The objective function 9

cedure that could reasonably have generated the data set you have. In the
case of the straight line fit in the presence of known, Gaussian uncertainties
in one dimension, one can create this generative model as follows: Imagine
that the data really do come from a line of the form y = f(x) = mx+ b, and
that the only reason that any data point deviates from this perfect, narrow,
straight line is that to each of the true y values a small y-direction offset
has been added, where that offset was drawn from a Gaussian distribution
of zero mean and known variance σ2

y. In this model, given an independent
position xi, an uncertainty σyi, a slope m, and an intercept b, the frequency
distribution p(yi|xi, σyi,m, b) for yi is

p(yi|xi, σyi,m, b) =
1√

2π σ2
yi

exp

(
− [yi −mxi − b]2

2σ2
yi

)
, (9)

where this gives the expected frequency (in a hypothetical set of repeated
experiments13) of getting a value in the infinitesimal range [yi, yi + dy] per
unit dy.

The generative model provides us with a natural, justified, scalar objec-
tive: We seek the line (parameters m and b) that maximize the probability
of the observed data given the model or (in standard parlance) the likelihood
of the parameters.14 In our generative model the data points are indepen-
dently drawn (implicitly), so the likelihood L is the product of conditional
probabilities

L =
N∏
i=1

p(yi|xi, σyi,m, b) . (10)

Taking the logarithm,

ln L = K −
N∑
i=1

[yi −mxi − b]2
2σ2

yi

= K − 1

2
χ2 , (11)

where K is some constant. This shows that likelihood maximization is iden-
tical to χ2 minimization and we have justified, scientifically, the procedure
of the previous Section.

The Bayesian generalization of this is to say that

p(m, b|{yi}Ni=1, I) =
p({yi}Ni=1|m, b, I) p(m, b|I)

p({yi}Ni=1|I)
, (12)
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where m and b are the model parameters, {yi}Ni=1 is a short-hand for all the
data yi, I is a short-hand for all the prior knowledge of the xi and the σyi and
everything else about the problem15, p(m, b|{yi}Ni=1, I) is the posterior proba-
bility distribution for the parameters given the data and the prior knowledge,
p({yi}Ni=1|m, b, I) is the likelihood L just computed in equation (10) (which
is a frequency distribution for the data), p(m, b|I) is the prior probability
distribution for the parameters that represents all knowledge except the data
{yi}Ni=1, and the denominator can—for our purposes—be thought of as a
normalization constant, obtained by marginalizing the numerator over all
parameters. Unless the prior p(m, b|I) has a lot of variation in the region
of interest, the posterior distribution function p(m, b|{yi}Ni=1, I) here is go-
ing to look very similar to the likelihood function in equation (10) above.
That is, with an uninformative prior, the straight line that maximizes the
likelihood will come extremely close to maximizing the posterior probability
distribution function; we will return to this later.

We have succeeded in justifying the standard method as optimizing a
justified, scalar objective function; the likelihood of a generative model for
the data. It is just the great good luck of Gaussian distributions that the
objective can be written as a quadratic function of the data. This makes the
optimum a linear function of the data, and therefore trivial to obtain. This
is a miracle.16

Exercise 4: Imagine a set of N measurements ti, with uncertainty vari-
ances σ2

ti, all of the same (unknown) quantity T . Assuming the generative
model that each ti differs from T by a Gaussian-distributed offset, taken from
a Gaussian with zero mean and variance σ2

ti, write down an expression for
the log likelihood ln L for the data given the model parameter T . Take a
derivative and show that the maximum likelihood value for T is the usual
weighted mean.

Exercise 5: Take the matrix formulation for χ2 given in equation (7) and
take derivatives to show that the minimum is at the matrix location given in
equation (5).
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3 Pruning outliers

The standard linear fitting method is very sensitive to outliers, that is, points
that are substantially farther from the linear relation than expected—or not
on the relation at all—because of unmodeled experimental uncertainty or
unmodeled but rare sources of noise (or because the model has a restricted
scope and doesn’t apply to all the data). There are two general approaches
to mitigating this sensitivity, which are not necessarily different. The first
is to find ways to objectively remove, reject, or become insensitive to “bad”
points; this is the subject of this Section. The second is to better model
your data-point uncertainties, permitting larger deviations than the Gaussian
noise estimates; this is the subject of Section 5. Both of these are strongly
preferable to sorting through the data and rejecting points by hand, for
reasons of subjectivity and irreproducibility that we need not state. They
are also preferable to the standard (in astrophysics anyway) procedure known
as “sigma clipping”, which is a procedure and not the outcome of justifiable
modeling.17

If we want to explicitly and objectively reject bad data points, we must
add to the problem a set of N binary integers qi, one per data point, each
of which is unity if the ith data point is good, and zero if the ith data
point is bad.18 In addition, to construct an objective function, one needs a
parameter Pb, the prior probability that any individual data point is bad, and
parameters (Yb, Vb), the mean and variance of the distribution of bad points
(in y). We need these latter parameters because, as we have emphasized
above, our inference comes from evaluating a probabilistic generative model
for the data, and that model must generate the bad points as well as the
good points!

All these N + 3 extra parameters ({qi}Ni=1, Pb, Yb, Vb) may seem like crazy
baggage, but their values can be inferred and marginalized out so in the
end, we will be left with an inference just of the line parameters (m, b).
In general, there is no reason to be concerned just because you have more
parameters than data.19 However, the marginalization will require that we
have a measure on our parameters (integrals require measures) and that
measure is provided by a prior. That is, the marginalization will require,
technically, that we become Bayesian; more on this below.
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In this case, the likelihood is

L ≡ p({yi}Ni=1|m, b, {qi}Ni=1, Yb, Vb, I)

L =
N∏
i=1

[
pfg({yi}Ni=1|m, b, I))

]qi [
pbg({yi}Ni=1|Yb, Vb, I)

][1−qi]
L =

N∏
i=1

 1√
2π σ2

yi

exp

(
− [yi −mxi − b]2

2σ2
yi

)qi

×

 1√
2 π [Vb + σ2

yi]
exp

(
− [yi − Yb]2

2 [Vb + σ2
yi]

)[1−qi]

, (13)

where pfg(·) and pbg(·) are the generative models for the foreground (good,
or straight-line) and background (bad, or outlier) points. Because we are
permitting data rejection, there is an important prior probability on the
{qi}Ni=1 that penalizes each rejection:

p(m, b, {qi}Ni=1, Pb, Yb, Vb|I) = p({qi}Ni=1|Pb, I) p(m, b, Pb, Yb, Vb|I)

p({qi}Ni=1|Pb, I) =
N∏
i=1

[1− Pb]qi P
[1−qi]
b , (14)

that is, the binomial probability of the particular sequence {qi}Ni=1. The
priors on the other parameters (Pb, Yb, Vb) should either be set according
to an analysis of your prior knowledge or else be uninformative (as in flat
in Pb in the range [0, 1], flat in Yb in some reasonable range, and flat in
the logarithm of Vb in some reasonable range). If your data are good, it
won’t matter whether you choose uninformative priors or priors that really
represent your prior knowledge; in the end good data dominate either.

We have made a somewhat restrictive assumption that all data points
are equally likely a priori to be bad, but you rarely know enough about the
badness of your data to assume anything better.20 The fact that the prior
probabilities Pb are all set equal, however, does not mean that the posterior
probabilities that individual points are bad will be at all similar. Indeed,
this model permits an objective ranking (and hence public embarassment) of
different contributions to any data set.21

We have used in this likelihood formulation a Gaussian model for the
bad points; is that permitted? Well, we don’t know much about the bad
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points (that is one of the things that makes them bad), so this Gaussian
model must be wrong in detail. But the power of this and the methods to
follow comes not from making an accurate model of the outliers, it comes
simply from modeling them. If you have an accurate or substantiated model
for your bad data, use it by all means. If you don’t, because the Gaussian
is the maximum-entropy distribution described by a mean and a variance,
it is—in some sense—the least restrictive assumption, given that we have
allowed that mean and variance to vary in the fitting (and, indeed, we will
marginalize over both in the end).

The posterior probability distribution function, in general, is the likeli-
hood times the prior, properly normalized. In this case, the posterior we
(tend to) care about is that for the line parameters (m, b). This is the full
posterior probability distribution marginalized over the bad-data parameters
({qi}Ni=1, Pb, Yb, Vb). Defining θ ≡ (m, b, {qi}Ni=1, Pb, Yb, Vb) for brevity, the
full posterior is

p(θ, I) =
p({yi}Ni=1|θ, I)

p({yi}Ni=1|I)
p(θ|I) , (15)

where the denominator can—for our purposes here—be thought of as a nor-
malization integral that makes the posterior distribution function integrate
to unity. The marginalization looks like

p(m, b|{yi}Ni=1, I) =

∫
d{qi}Ni=1 dPb dYb dVb p(θ, I) , (16)

where by the integral over d{qi}Ni=1 we really mean a sum over all of the
2N possible settings of the qi, and the integrals over the other parameters
are over their entire prior support. Effectively, then, this marginalization
involves evaluating 2N different likelihoods and marginalizing each one of
them over (Pb, Yb, Vb)! Of course, because very few points are true candidates
for rejection, there are many ways to “trim the tree” and do this more quickly,
but thought is not necessary: Marginalization is in fact analytic.

Marginalization of this—what we will call “exponential”—model leaves
a much more tractable—what we will call “mixture”—model. Imagine
marginalizing over an individual qi. After this marginalization, the ith point
can be thought of as being drawn from a mixture (sum with amplitudes
that sum to unity) of the straight-line and outlier distributions. That is, the
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generative model for the data {yi}Ni=1 integrates (or sums, really) to

L ≡ p({yi}Ni=1|m, b, Pb, Yb, Vb, I)

L ≡
N∏
i=1

[
(1− Pb) pfg({yi}Ni=1|m, b, I)) + Pb pbg({yi}Ni=1|Yb, Vb, I)

]
L ∝

N∏
i=1

 1− Pb√
2π σ2

yi

exp

(
− [yi −mxi − b]2

2σ2
yi

)

+
Pb√

2 π [Vb + σ2
yi]

exp

(
− [yi − Yb]2

2 [Vb + σ2
yi]

) , (17)

where pfg(·) and pbg(·) are the generative models for the foreground and
background points, Pb is the probability that a data point is bad (or, more
properly, the amplitude of the bad-data distribution function in the mixture),
and (Yb, Vb) are parameters of the bad-data distribution.

Marginalization of the posterior probability distribution function gener-
ated by the product of the mixture likelihood in equation (17) times a prior on
(m, b, Pb, Yb, Vb) does not involve exploring an exponential number of alter-
natives. An integral over only three parameters produces the marginalized
posterior probability distribution function for the straight-line parameters
(m, b). This scale of problem is very well-suited to simple multi-dimensional
integrators, in particular it works very well with a simple Markov-Chain
Monte Carlo, which we advocate below.

We have lots to discuss. We have gone from a procedure (Section 1) to an
objective function (Section 2) to a general expression for a non-trivial poste-
rior probability distribution function involving priors and multi-dimensional
integration. We will treat each of these issues in turn: We must set the prior,
we must find a way to integrate to marginalize the distribution function, and
then we have to decide what to do with the marginalized posterior: Optimize
it or sample from it?

It is unfortunate that prior probabilities must be specified. Conven-
tional frequentists take this problem to be so severe that for some it invali-
dates Bayesian approaches entirely! But a prior is a necessary condition for
marginalization, and marginalization is necessary whenever extra parameters
are introduced beyond the two (m, b) that we care about for our straight-
line fit.22 Furthermore, in any situation of straight-line fitting where the
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data are numerous and generally good, these priors do not matter very much
to the final answer. The way we have written our likelihoods, the peak in
the posterior distribution function becomes very directly analogous to what
you might call the maximum-likelihood answer when the (improper, non-
normalizable) prior “flat in m, flat in b” is adopted, and something sensible
has been chosen for (Pb, Yb, Vb). Usually the investigator does have some
basis for setting some more informative priors, but a deep and sensible dis-
cussion of priors is beyond the scope of this document. Suffice it to say, in
this situation—pruning bad data—the setting of priors is the least of one’s
problems.

The second unfortunate thing about our problem is that we must
marginalize. It is also a fortunate thing that we can marginalize. As we
have noted, marginalization is necessary if you want to get estimates with
uncertainties or confidence intervals in the straight-line parameters (m, b)
that properly account for their covariances with the nuisance parameters
(Pb, Yb, Vb). This marginalization can be performed by direct numerical
integration (think gridding up the nuisance parameters, evaluating the pos-
terior probability at every grid point, and summing), or it can be performed
with some kind of sampler, such as a Monte-Carlo Markov Chain. We
strongly recommend the latter because in situations where the integral is of
a probability distribution, not only does the MCMC scheme integrate it, it
also produces a sampling from the distribution as a side-product for free.

The standard Metropolis–Hastings MCMC procedure works extremely
well in this problem for both the optimization and the integration and sam-
pling. A discussion of this algorithm is beyond the scope of this document,
but briefly the algorithm is this simple: Starting at some position in param-
eter space, where you know the posterior probability, iterate the following:
(a) Step randomly in parameter space. (b) Compute the new posterior prob-
ability at the new position in parameter space. (c) Draw a random number
R in the range 0 < R < 1. (d) If R is less than the ratio of the new pos-
terior probability to the old (pre-step) probability, accept the step, add the
new parameters to the chain; if it is greater, reject the step, re-add the old
parameters to the chain. The devil is in the details, but good descriptions
abound23 and that with a small amount of experimentation (try Gaussians
for the proposal distribution and scale them until the acceptance ratio is
about half) rapid convergence and sampling is possible in this problem. A
large class of MCMC algorithms exists, many of which outperform the simple
Metropolis algorithm with little extra effort.24
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Once you have run an MCMC or equivalent and obtained a chain of sam-
ples from the posterior probability distribution for the full parameter set
(m, b, Pb, Yb, Vb), you still must decide what to report about this sampling.
A histogram of the samples in any one dimension is an approximation to the
fully marginalized posterior probability distribution for that parameter, and
in any two is that for the pair. You can find the “maximum a posteriori”
(or MAP) value, by taking the peak of the marginalized posterior proba-
bility distribution for the line parameters (m, b). This, in general, will be
different from the (m, b) value at the peak of the unmarginalized probability
distribution for all the parameters (m, b, Pb, Yb, Vb), because the posterior
distribution can be very complex in the five-dimensional space. Because, for
our purposes, the three parameters (Pb, Yb, Vb) are nuisance parameters, it is
more correct to take the “best-fit” (m, b) from the marginalized distribution.

Of course finding the MAP value from a sampling is not trivial. At
best, you can take the highest-probability sample. However, this works only
for the unmarginalized distribution. The MAP value from the marginalized
posterior probability distribution function for the two line parameters (m, b)
will not be the value of (m, b) for the highest-probability sample. To find
the MAP value in the marginalized distribution, it will be necessary to make
a histogram or perform density estimation in the sample; this brings up an
enormous host of issues way beyond the scope of this document. For this
reason, we usually advise just taking the mean or median or some other
simple statistic on the sampling. It is also possible to establish confidence
intervals (or credible intervals) using the distribution of the samples.25

While the MAP answer—or any other simple “best answer”—is inter-
esting, it is worth keeping in mind the third unfortunate thing about any
Bayesian method: It does not return an “answer” but rather it returns a pos-
terior probability distribution. Strictly, this posterior distribution function is
your answer. However, what scientists are usually doing is not inference but
rather decision-making. That is, the investigator wants a specific answer, not
a distribution. There are (at least) two reactions to this. One is to ignore the
fundamental Bayesianism at the end, and choose simply the MAP answer.
This is the Bayesian’s analog of maximum likelihood; the standard uncer-
tainty on the MAP answer would be based on the peak curvature or variance
of the marginalized posterior distribution. The other reaction is to suck it
up and sample the posterior probability distribution and carry forward not
one answer to the problem but M answers, each of which is drawn fairly and
independently from the posterior distribution function. The latter is to be
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preferred because (a) it shows the uncertainties very clearly, and (b) the sam-
pling can be carried forward to future inferences as an approximation to the
posterior distribution function, useful for propagating uncertainty, or stand-
ing in as a prior for some subsequent inference.26 It is also returned, trivially
(as we noted above) by the MCMC integrator we advised for performing the
marginalization.

Exercise 6: Using the mixture model proposed above—that treats the dis-
tribution as a mixture of a thin line containing a fraction [1−Pb] of the points
and a broader Gaussian containing a fraction Pb of the points—find the best-
fit (the maximum a posteriori) straight line y = mx+ b for the x, y, and σy
for the data in Table 1 on page 6. Before choosing the MAP line, marginalize
over parameters (Pb, Yb, Vb). That is, if you take a sampling approach, this
means sampling the full five-dimensional parameter space but then choosing
the peak value in the histogram of samples in the two-dimensional parame-
ter space (m, b). Make one plot showing this two-dimensional histogram, and
another showing the points, their uncertainties, and the MAP line. How does
this compare to the standard result you obtained in Exercise 2? Do you like
the MAP line better or worse? For extra credit, plot a sampling of 10 lines
drawn from the marginalized posterior distribution for (m, b) (marginalized
over Pb, Yb, Vb) and plot the samples as a set of light grey or transparent
lines. Your plot should look like Figure 4.

Exercise 7: Solve Exercise 6 but now plot the fully marginalized (over
m, b, Yb, Vb) posterior distribution function for parameter Pb. Is this distri-
bution peaked about where you would expect, given the data? Now repeat
the problem, but dividing all the data uncertainty variances σ2

yi by 4 (or di-
viding the uncertainties σyi by 2). Again plot the fully marginalized posterior
distribution function for parameter Pb. Your plots should look something like
those in Figure 5. Discuss.

4 Uncertainties in the best-fit parameters

In the standard linear-algebra method of χ2 minimization given in Section 1,
the uncertainties in the best-fit parameters (m, b) are given by the two-
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Figure 4.— Partial solution to Exercise 6: On the left, a sampling approx-
imation to the marginalized posterior probability distribution (left) for the
outlier (mixture) model. On the right, the marginalized MAP line (dark grey
line) and a draw from the sampling (light grey lines).
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Figure 5.— Partial solution to Exercise 7: The marginalized posterior prob-
ability distribution function for the Pb parameter (prior probability that a
point is an outlier); this distribution gets much worse when the data uncer-
tainties are underestimated.
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dimensional output covariance matrix[
σ2
b σmb

σmb σ2
m

]
=
[
A>C−1A

]−1
, (18)

where the ordering is defined by the ordering in matrix A. These uncer-
tainties for the model parameters only strictly hold under three extremely
strict conditions, none of which is met in most real situations: (a) The un-
certainties in the data points must have variances correctly described by the
σ2
yi; (b) there must be no rejection of any data or any departure from the

exact, standard definition of χ2 given in equation (7); and (c) the generative
model of the data implied by the method—that is, that the data are truly
drawn from a negligible-scatter linear relationship and subsequently had noise
added, where the noise offsets were generated by a Gaussian process—must
be an accurate description of the data.

These conditions are rarely met in practice. Often the noise estimates
are rough (or missing entirely!), the investigator has applied data rejection
or equivalent conditioning, and the relationship has intrinsic scatter and cur-
vature.27 For these generic reasons, we much prefer empirical estimates of
the uncertainty in the best-fit parameters.

In the Bayesian outlier-modeling schemes of Section 3, the output is a
posterior distribution for the parameters (m, b). This distribution function is

closer than the standard estimate
[
A>C−1A

]−1
to being an empirical mea-

surement of the uncertainties of the parameters. The uncertainty variances
(σ2

m, σ
2
b ) and the covariance σmb can be computed as second moments of this

posterior distribution function. Computing the variances this way does in-
volve assumptions, but it is not extremely sensitive to the assumption that
the model is a good fit to the data; that is, as the model becomes a bad fit
to the data (for example when the data points are not consistent with being
drawn from a narrow, straight line), these uncertainties change in accordance.

That is in strong contrast to the elements of the matrix
[
A>C−1A

]−1
, which

don’t depend in any way on the quality of fit.
Either way, unless the output of the fit is being used only to estimate the

slope, and nothing else, it is a mistake to ignore the off-diagonal terms of the
uncertainty variance tensor. That is, you generally know some linear com-
binations of m and b much, much better than you know either individually
(see, for example, Figures 4 and 6). When the data are good, this covariance
is related to the location of the data relative to the origin, but any non-
trivial propagation of the best-fit results requires use of either the full 2× 2
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uncertainty tensor or else a two-dimensional sampling of the two-dimensional
(marginalized, perhaps) posterior distribution.

In any non-Bayesian scheme, or when the full posterior has been discarded
in favor of only the MAP value, or when data-point uncertainties are not
trusted, there are still empirical methods for determining the uncertainties in
the best-fit parameters. The two most common are bootstrap and jackknife.
The first attempts to empirically create new data sets that are similar to
your actual data set. The second measures your differential sensitivity to
each individual data point.

In bootstrap, you do the unlikely-sounding thing of drawingN data points
randomly from the N data points you have with replacement. That is, some
data points get dropped, and some get doubled (or even tripled), but the
important thing is that you select each of the N that you are going to use
in each trial independently from the whole set of N you have. You do this
selection of N points once for each of M bootstrap trials j. For each of the
M trials j, you get an estimate—by whatever method you are using (linear
fitting, fitting with rejection, optimizing some custom objective function)—
of the parameters (mj, bj), where j goes from 1 to M . An estimate of your
uncertainty variance on m is

σ2
m =

1

M

M∑
j=1

[mj −m]2 , (19)

where m stands for the best-fit m using all the data. The uncertainty variance
on b is the same but with [bj − b]2 in the sum, and the covariance σmb is the
same but with [mj − m] [bj − b]. Bootstrap creates a new parameter, the
number M of trials. There is a huge literature on this, so we won’t say
anything too specific, but one intuition is that once you have M comparable
to N , there probably isn’t much else you can learn, unless you got terribly
unlucky with your random number generator.

In jackknife, you make your measurement N times, each time leaving out
data point i. Again, it doesn’t matter what method you are using, for each
leave-one-out trial i you get an estimate (mi, bi) found by fitting with all the
data except point i. Then you calculate

m =
1

N

N∑
i=1

mi , (20)
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and the uncertainty variance becomes

σ2
m =

N − 1

N

N∑
i=1

[mi −m]2 , (21)

with the obvious modifications to make σ2
b and σmb. The factor [N − 1]/N

accounts, magically, for the fact that the samples are not independent in any
sense; this factor can only be justified in the limit that everything is Gaussian
and all the points are identical in their noise properties.

Jackknife and bootstrap are both extremely useful when you don’t know
or don’t trust your uncertainties {σ2

yi}Ni=1. However, they do make assump-
tions about the problem. For example, they can only be justified when data
represent a reasonable sampling from some stationary frequency distribution
of possible data from a set of hypothetical, similar experiments. This as-
sumption is, in some ways, very strong, and often violated.28 For another
example, these methods will not give correct answers if the model does not
fit the data reasonably well. That said, if you do believe your uncertainty
estimates, any differences between the jackknife, bootstrap, and traditional
uncertainty estimates for the best-fit line parameters undermine confidence
in the validity of the model. If you believe the model, then any differences
between the jackknife, bootstrap, and traditional uncertainty estimates un-
dermine confidence in the data-point uncertainty variances {σ2

yi}Ni=1.

Exercise 8: Compute the standard uncertainty σ2
m obtained for the slope

of the line found by the standard fit you did in Exercise 2. Now make
jackknife (20 trials) and bootstrap estimates for the uncertainty σ2

m. How do
the uncertainties compare and which seems most reasonable, given the data
and uncertainties on the data?

Exercise 9: Re-do Exercise 6—the mixture-based outlier model—but just
with the “inlier” points 5 through 20 from Table 1 on page 6. Then do
the same again, but with all measurement uncertainties reduced by a factor
of 2 (uncertainty variances reduced by a factor of 4). Plot the marginal-
ized posterior probability distributions for line parameters (m, b) in both
cases. Your plots should look like those in Figure 6. Did these posterior
distributions get smaller or larger with the reduction in the data-point un-
certainties? Compare this with the dependence of the standard uncertainty

estimate
[
A>C−1A

]−1
.
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Figure 6.— Partial solution to Exercise 9: The posterior probability distri-
bution can become multi-modal (right panel) when you underestimate your
observational uncertainties.

5 Non-Gaussian uncertainties

The standard method of Section 1 is only justified when the measurement
uncertainties are Gaussian with known variances. Many noise processes in
the real world are not Gaussian; what to do? There are three general kinds
of methodologies for dealing with non-Gaussian uncertainties. Before we
describe them, permit an aside on uncertainty and error.

In note 10, we point out that an uncertainty is a measure of what you
don’t know, while an error is a mistake or incorrect value. The fact that
a measurement yi differs from some kind of “true” value Yi that it would
have in some kind of “perfect experiment” can be for two reasons (which
are not unrelated): It could be that there is some source of noise in the
experiment that generates offsets for each data point i away from its true
value. Or it could be that the “measurement” yi is actually the outcome
of some probabilistic inference itself and therefore comes with a posterior
probability distribution. In either case, there is a finite uncertainty, and in
both cases it comes somehow from imperfection in the experiment, but the
way you understand the distribution of the uncertainty is different. In the
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first case, you have to make a model for the noise in the experiment. In
the second, you have to analyze some posteriors. In either case, clearly, the
uncertainty can be non-Gaussian.

All that said, and even when you suspect that the sources of noise are not
Gaussian, it is still sometimes okay to treat the uncertainties as Gaussian:
The Gaussian distribution is the maximum-entropy distribution for a fixed
variance. That means that if you have some (perhaps magical) way to esti-
mate the variance of your uncertainty, and you aren’t sure of anything else
but the variance, then the Gaussian is—contrary to popular opinion—the
most conservative thing you can assume.29 Of course it is very rare that you
do know the variance of your uncertainty or noise; most simple uncertainty
estimators are measurements of the central part of the distribution function
(not the tails) and are therefore not good estimators of the total variance.

Back to business. The first approach to non-Gaussian noise or uncertainty
is (somehow) to estimate the true or total variance of your uncertainties and
then do the most conservative thing, which is to once again assume that the
noise is Gaussian! This is the simplest approach, but rarely possible, because
when there are non-Gaussian uncertainties, the observed variance of a finite
sample of points can be very much smaller than the true variance of the
generating distribution function. The second approach is to make no attempt
to understand the non-Gaussianity, but to use the data-rejection methods of
Section 3. We generally recommend data-rejection methods, but there is a
third approach in which the likelihood is artificially or heuristically softened
to reduce the influence of the outliers. This approach is not usually a good
idea when it makes the objective function far from anything justifiable.30

The fourth approach—the only approach that is really justified—is to fully
understand and model the non-Gaussianity.

For example, if data points are generated by a process the noise from
which looks like a sum or mixture of k Gaussians with different variances,
and the distribution can be understood well enough to be modeled, the in-
vestigator can replace the Gaussian objective function with something more
realistic. Indeed, any (reasonable) frequency distribution can be described
as a mixture of Gaussians, so this approach is extremely general (in prin-
ciple; it may not be easy). For example, the generative model in Section 2
for the standard case was built out of individual data-point likelihoods given
in equation (9). If the frequency distribution for the noise contribution to
data point yi has been expressed as the sum of k Gaussians, these likelihoods
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become

p(yi|xi, σyi,m, b) =
k∑

j=1

aij√
2 π σ2

yij

exp

(
− [yi + ∆yij −mxi − b]2

2σ2
yij

)
, (22)

where the k Gaussians for measurement i have variances σyij, offsets
(means—there is no need for the Gaussians to be concentric) ∆yij, and
amplitudes aij that sum to unity

k∑
j=1

aij = 1 (23)

In this case, fitting becomes much more challenging (from an optimization
standpoint), but this can become a completely general objective function for
arbitrarily complicated non-Gaussian uncertainties. It can even be gener-
alized to situations of arbitrarily complicated joint distributions for all the
measurement uncertainties.

One very common non-Gaussian situation is one in which the data points
include upper or lower limits, or the investigator has a value with an uncer-
tainty estimate but knows that the true value can’t enter into some region
(for example, there are many situations in which one knows that all the true
Yi must be greater than zero). In all these situations—of upper limits or
lower limits or otherwise limited uncertainties—the best thing to do is to
model the uncertainty distribution as well as possible, construct the proper
justified scalar objective function, and carry on.31 Optimization might be-
come challenging, but that is an engineering problem that must be tackled
for scientific correctness.

6 Goodness of fit and unknown uncertainties

How can you decide if your fit is a good one, or that your assumptions are
justified? And how can you infer or assess the individual data-point uncer-
tainties if you don’t know them, or don’t trust them? These seem like differ-
ent questions, but they are coupled: In the standard (frequentist) paradigm,
you can’t test your assumptions unless you are very confident about your
uncertainty estimates, and you can’t test your uncertainty estimates unless
you are very confident about your assumptions.
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Imagine that the generative model in Section 2 is a valid description of
the data. In this case, the noise contribution for each data point i has been
drawn from a Gaussian with variance σ2

yi. The expectation is that data point
i will provide a mean squared error comparable to σ2

yi, and a contribution
of order unity to χ2 when the parameters (m, b) are set close to their true
values. Because in detail there are two fit parameters (m, b) which you have
been permitted to optimize, the expectation for χ2 is smaller than N . The
model is linear, so the distribution of χ2 is known analytically and is given
(unsurprisingly) by a chi-square distribution: in the limit of large N the
rule of thumb is that—when the model is a good fit, the uncertainties are
Gaussian with known variances, and there are two linear parameters (m and
b in this case),

χ2 = [N − 2]±
√

2 [N − 2] , (24)

where the ± symbol is used loosely to indicate something close to a standard
uncertainty (something close to a 68-percent confidence interval). If you find
χ2 in this ballpark, it is conceivable that the model is good.32

Model rejection on the basis of too-large χ2 is a frequentist’s option. A
Bayesian can’t interpret the data without a model, so there is no meaning
to the question “is this model good?”. Bayesians only answer questions
of the form “is this model better than that one?”. Because we are only
considering the straight-line model in this document, further discussion of
this (controversial, it turns out) point goes beyond our scope.33

It is easy to get a χ2 much higher than [N−2]; getting a lower value seems
impossible; yet it happens very frequently. This is one of the many reasons
that rejection or acceptance of a model on the χ2 basis is dangerous; exactly
the same kinds of problems that can make χ2 unreasonably low can make it
unreasonably high; worse yet, it can make χ2 reasonable when the model is
bad. Reasons the χ2 value can be lower include that uncertainty estimates
can easily be overestimated. The opposite of this problem can make χ2 high
when the model is good. Even worse is the fact that uncertainty estimates
are often correlated, which can result in a χ2 value significantly different from
the expected value.

Correlated measurements are not uncommon; the process by which the
observations were taken often involve shared information or assumptions. If
the individual data-points yi have been estimated by some means that effec-
tively relies on that shared information, then there will be large covariances
among the data points. These covariances bring off-diagonal elements into



6. Goodness of fit and unknown uncertainties 27

the covariance matrix C, which was trivially constructed in equation (4) un-
der the assumption that all covariances (off-diagonal elements) are precisely
zero. Once the off-diagonal elements are non-zero, χ2 must be computed by
the matrix expression in equation (7); this is equivalent to replacing the sum
over i to two sums over i and j and considering all cross terms

χ2 = [Y −AX]>C−1 [Y −AX] =
N∑
i=1

N∑
j=1

wij [yi − f(xi)] [yj − f(xj)] ,

(25)
where the wij are the elements of the inverse covariance matrix C−1.

In principle, data-point uncertainty variance underestimation or mean
point-to-point covariance can be estimated by adjusting them until χ2 is
reasonable, in a model you know (for independent reasons) to be good. This
is rarely a good idea, both because you rarely know that the model is a good
one, and because you are much better served understanding your variances
and covariances directly.

If you don’t have or trust your uncertainty estimates and don’t care about
them at all, your best bet is to go Bayesian, infer them, and marginalize them
out. Imagine that you don’t know anything about your individual data-point
uncertainty variances {σ2

yi}Ni=1 at all. Imagine, further, that you don’t even
know anything about their relative magnitudes; that is, you can’t even as-
sume that they have similar magnitudes. In this case a procedure is the
following: Move the uncertainties into the model parameters to get the large
parameter list (m, b, {σ2

yi}Ni=1). Pick a prior on the uncertainties (on which
you must have some prior information, given, for example, the range of your
data and the like). Apply Bayes’s rule to obtain a posterior distribution
function for all the parameters (m, b, {σ2

yi}Ni=1). Marginalize over the uncer-
tainties to obtain the properly marginalized posterior distribution function
for (m, b). No sane person would imagine that the procedure described here
can lead to any informative inference. However, if the prior on the {σ2

yi}Ni=1

is relatively flat in the relevant region, the lack of specificity of the model
when the uncertainties are large pushes the system to smaller uncertainties,
and the inaccuracy of the model when the uncertainties are small pushes
the system to larger uncertainties. If the model is reasonable, the inferred
uncertainties will be reasonable too.

Exercise 10: Assess the χ2 value for the fit performed in Exercise 1 (do
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that problem first if you haven’t already). Is the fit good? What about for
the fit performed in Exercise 2?

Exercise 11: Re-do the fit of Exercise 1 but setting all σ2
yi = S, that is,

ignoring the uncertainties and replacing them all with the same value S.
What uncertainty variance S would make χ2 = N − 2? Relevant plots are
shown in Figure 7. How does it compare to the mean and median of the
uncertainty variances {σ2

yi}Ni=1?
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Figure 7.— Partial solution to Exercise 11: The dependence of the fitting
scalar χ2 on what is assumed about the data uncertainties.

Exercise 12: Flesh out and write all equations for the Bayesian uncer-
tainty estimation and marginalization procedure described in this Section.
Note that the inference and marginalization would be very expensive with-
out excellent sampling tools! Make the additional (unjustified) assumption
that all the uncertainties have the same variance σ2

yi = S to make the prob-
lem tractable. Apply the method to the x and y values for points 5 through
20 in Table 1 on page 6. Make a plot showing the points, the maximum
a posteriori value of the uncertainty variance as error bars, and the maxi-
mum a posteriori straight line. For extra credit, plot two straight lines, one



7. Arbitrary two-dimensional uncertainties 29

that is maximum a posteriori for the full posterior and one that is the same
but for the posterior after the uncertainty variance S has been marginalized
out. Your result should look like Figure 8. Also plot two sets of error bars,
one that shows the maximum for the full posterior and one for the posterior
after the line parameters (m, b) have been marginalized out.
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Figure 8.— Partial solution to Exercise 12: The results of inferring the ob-
servational uncertainties simultaneously with the fit parameters.

7 Arbitrary two-dimensional uncertainties

Of course most real two-dimensional data {xi, yi}Ni=1 come with uncertainties
in both directions (in both x and y). You might not know the amplitudes
of these uncertainties, but it is unlikely that the x values are known to
sufficiently high accuracy that any of the straight-line fitting methods given
so far is valid. Recall that everything so far has assumed that the x-direction
uncertainties were negligible. This might be true, for example, when the xi
are the times at which a set of stellar measurements are made, and the yi are
the declinations of the star at those times. It is not going to be true when
the xi are the right ascensions of the star.

In general, when one makes a two-dimensional measurement (xi, yi), that
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measurement comes with uncertainties (σ2
xi, σ

2
yi) in both directions, and some

covariance σxyi between them. These can be put together into a covariance
tensor Si

Si ≡
[
σ2
xi σxyi

σxyi σ2
yi

]
. (26)

If the uncertainties are Gaussian, or if all that is known about the uncer-
tainties is their variances, then the covariance tensor can be used in a two-
dimensional Gaussian representation of the probability of getting measure-
ment (xi, yi) when the “true value” (the value you would have for this data
point if it had been observed with negligible noise) is (x, y):

p(xi, yi|Si, x, y) =
1

2π
√

det(Si)
exp

(
−1

2
[Zi −Z]> Si

−1 [Zi −Z]

)
,

(27)
where we have implicitly made column vectors

Z =

[
x
y

]
; Zi =

[
xi
yi

]
. (28)

Now in the face of these general (though Gaussian) two-dimensional un-
certainties, how do we fit a line? Justified objective functions will have
something to do with the probability of the observations {xi, yi}Ni=1 given the
uncertainties {Si}Ni=1, as a function of properties (m, b) of the line. As in
Section 2, the probability of the observations given model parameters (m, b)
is proportional to the likelihood of the parameters given the observations.
We will now construct this likelihood and maximize it, or else multiply it by
a prior on the parameters and report the posterior on the parameters.

Schematically, the construction of the likelihood involves specifying the
line (parameterized by m, b), finding the probability of each observed data
point given any true point on that line, and marginalizing over all possible
true points on the line. This is a model in which each point really does have
a true location on the line, but that location is not directly measured; it is,
in some sense, a missing datum for each point.34 One approach is to think
of the straight line as a two-dimensional Gaussian with an infinite eigenvalue
corresponding to the direction of the line and a zero eigenvalue for the direc-
tion orthogonal to this. In the end, this line of argument leads to projections
of the two-dimensional uncertainty Gaussians along the line (or onto the sub-
space that is orthogonal to the line), and evaluation of those at the projected
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displacements. Projection is a standard linear algebra technique, so we will
use linear algebra (matrix) notation.35

A slope m can be described by a unit vector v̂ orthogonal to the line or
linear relation:

v̂ =
1√

1 +m2

[
−m

1

]
=

[
− sin θ
cos θ

]
, (29)

where we have defined the angle θ = arctanm made between the line and
the x axis. The orthogonal displacement ∆i of each data point (xi, yi) from
the line is given by

∆i = v̂>Zi − b cos θ , (30)

where Zi is the column vector made from (xi, yi) in equation (28). Simi-
larly, each data point’s covariance matrix Si projects down to an orthogonal
variance Σ2

i given by
Σ2

i = v̂> Si v̂ (31)

and then the log likelihood for (m, b) or (θ, b cos θ) can be written as

ln L = K −
N∑
i=1

∆2
i

2 Σ2
i

, (32)

where K is some constant. This likelihood can be maximized, and the result-
ing values of (m, b) are justifiably the best-fit values. The only modification
we would suggest is performing the fit or likelihood maximization not in
terms of (m, b) but rather (θ, b⊥), where b⊥ ≡ [b cos θ] is the perpendicular
distance of the line from the origin. This removes the paradox that the stan-
dard “prior” assumption of standard straight-line fitting treats all slopes m
equally, putting way too much attention on angles near ±π/2. The Bayesian
must set a prior. Again, there are many choices, but the most natural is
something like flat in θ and flat in b⊥ (the latter not proper).

The implicit generative model here is that there are N points with true
values that lie precisely on a narrow, linear relation in the x–y plane. To
each of these true points a Gaussian offset has been added to make each
observed point (xi, yi), where the offset was drawn from the two-dimensional
Gaussian with covariance tensor Si. As usual, if this generative model is
a good approximation to the properties of the data set, the method works
very well. Of course there are many situations in which this is not a good
approximation. In Section 8, we consider the (very common) case that the
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relationship is near-linear but not narrow, so there is an intrinsic width or
scatter in the true relationship. Another case is that there are outliers; this
can be taken care of by methods very precisely analogous to the methods in
Section 3. We ask for this in the Exercises below.

It is true that standard least-squares fitting is easy and simple; presum-
ably this explains why it is used so often when it is inappropriate. We hope
to have convinced some readers that doing something justifiable and sensi-
ble when there are uncertainties in both dimensions—when standard linear
fitting is inappropriate—is neither difficult nor complex. That said, there is
something fundamental wrong with the generative model of this Section, and
it is that the model generates only the displacements of the points orthogo-
nal to the linear relationship. The model is completely unspecified for the
distribution along the relationship.36

In the astrophysics literature (see, for example, the Tully–Fisher litera-
ture), there is a tradition, when there are uncertainties in both directions, of
fitting the “forward” and “reverse” relations—that is, fitting y as a function
of x and then x as a function of y—and then splitting the difference between
the two slopes so obtained, or treating the difference between the slopes as a
systematic uncertainty. This is unjustified.37 Another common method for
finding the linear relationship in data when there are uncertainties in both
directions is principal components analysis. The manifold reasons not to use
PCA are beyond the scope of this document.38

Exercise 13: Using the method of this Section, fit the straight line y =
mx+ b to the x, y, σ2

x, σxy, and σ2
y values of points 5 through 20 taken from

Table 1 on page 6. Make a plot showing the points, their two-dimensional
uncertainties (show them as one-sigma ellipses), and the best-fit line. Your
plot should look like Figure 9.

Exercise 14: Repeat Exercise 13, but using all of the data in Table 1
on page 6. Some of the points are now outliers, so your fit may look worse.
Follow the fit by a robust procedure analogous to the Bayesian mixture model
with bad-data probability Pb described in Section 3. Use something sensible
for the prior probability distribution for (m, b). Plot the two results with
the data and uncertainties. For extra credit, plot a sampling of 10 lines
drawn from the marginalized posterior distribution for (m, b) and plot the
samples as a set of light grey or transparent lines. For extra extra credit,
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Figure 9.— Partial solution to Exercise 13: The best fit after properly ac-
counting for covariant noise in both dimensions.

mark each data point on your plot with the fully marginalized probability
that the point is bad (that is, rejected, or has q = 0). Your result should
look like Figure 10.

Exercise 15: Perform the abominable forward–reverse fitting procedure
on points 5 through 20 from Table 1 on page 6. That is, fit a straight line to
the y values of the points, using the y-direction uncertainties σ2

y only, by the
standard method described in Section 1. Now transpose the problem and fit
the same data but fitting the x values using the x-direction uncertainties σ2

x

only. Make a plot showing the data points, the x-direction and y-direction
uncertainties, and the two best-fit lines. Your plot should look like Figure 11.
Comment.

Exercise 16: Perform principal components analysis on points 5 through
20 from Table 1 on page 6. That is, diagonalize the 2× 2 matrix Q given by

Q =
N∑
i=1

[Zi − 〈Z〉] [Zi − 〈Z〉]> , (33)
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Figure 10.— Partial solution to Exercise 14: On the left, the same as Figure 9
but including the outlier points. On the right, the same as in Figure 4
but applying the outlier (mixture) model to the case of two-dimensional
uncertainties.
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forward −−− y = (2.24± 0.11) x+ (34± 18)
reverse − · − y = (2.64± 0.12) x+ (−50± 21)

Figure 11.— Partial solution to Exercise 15: Results of “forward and reverse”
fitting. Don’t ever do this.



8. Intrinsic scatter 35

〈Z〉 =
1

N

N∑
i=1

Zi (34)

Find the eigenvector ofQ with the largest eigenvalue. Now make a plot show-
ing the data points, and the line that goes through the mean 〈Z〉 of the data
with the slope corresponding to the direction of the principal eigenvector.
Your plot should look like Figure 12. Comment.
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y = 2.42 x− 5

Figure 12.— Partial solution to Exercise 16: The dominant component from
a principal components analysis.

8 Intrinsic scatter

So far, everything we have done has implicitly assumed that there truly is
a narrow linear relationship between x and y (or there would be if they
were both measured with negligible uncertainties). The words “narrow” and
“linear” are both problematic, since there are very few problems in science,
especially in astrophysics, in which a relationship between two observables is
expected to be either. The reasons for intrinsic scatter abound; but gener-
ically the quantities being measured are produced or affected by a large
number of additional, unmeasured or unmeasurable quantities; the relation
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between x and y is rarely exact, even in when observed by theoretically
perfect, noise-free observations.

Proper treatment of these problems gets into the complicated area of
estimating density given finite and noisy samples; again this is a huge subject
so we will only consider one simple solution to the one simple problem of a
relationship that is linear but not narrow. We will not consider anything that
looks like subtraction of variances in quadrature; that is pure procedure and
almost never justifiable.39 Instead—as usual—we introduce a model that
generates the data and infer the parameters of that model.

Introduce an intrinsic Gaussian variance V , orthogonal to the line. In
this case, the parameters of the relationship become (θ, b⊥, V ). In this case,
each data point can be treated as being drawn from a projected distribu-
tion function that is a convolution of the projected uncertainty Gaussian, of
variance Σ2

i defined in equation (31), with the intrinsic scatter Gaussian of
variance V . Convolution of Gaussians is trivial and the likelihood in this
case becomes

ln L = K −
N∑
i=1

1

2
ln(Σ2

i + V )−
N∑
i=1

∆2
i

2 [Σ2
i + V ]

, (35)

where againK is a constant, everything else is defined as it is in equation (32),
and an additional term has appeared to penalize very broad variances (which,
because they are less specific than small variances, have lower likelihoods).
Actually, that term existed in equation (32) as well, but because there was
no V parameter, it did not enter into any optimization so we absorbed it into
K.

As we mentioned in note 36, there are limitations to this procedure be-
cause it models only the distribution orthogonal to the relationship.40 Prob-
ably all good methods fully model the intrinsic two-dimensional density func-
tion, the function that, when convolved with each data point’s intrinsic uncer-
tainty Gaussian, creates a distribution function from which that data point is
a single sample. Such methods fall into the intersection of density estimation
and deconvolution, and completely general methods exist.41

Exercise 17: Re-do Exercise 13, but now allowing for an orthogonal intrin-
sic Gaussian variance V and only excluding data point 3. Re-make the plot,
showing not the best-fit line but rather the ±

√
V lines for the maximum-

likelihood intrinsic relation. Your plot should look like Figure 13.
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Figure 13.— Partial solution to Exercise 17: The maximum-likelihood fit,
allowing for intrinsic scatter.

Exercise 18: Re-do Exercise 17 but as a Bayesian, with sensible Bayesian
priors on (θ, b⊥, V ). Find and marginalize the posterior distribution over
(θ, b⊥) to generate a marginalized posterior probability for the intrinsic vari-
ance parameter V . Plot this posterior with the 95 and 99 percent upper
limits on V marked. Your plot should look like Figure 14. Why did we ask
only for upper limits?
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Figure 14.— Partial solution to Exercise 18: The marginalized posterior
probability distribution for the intrinsic variance.
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Notes

1Copyyright 2010 by the authors. You may copy and distribute this doc-
ument provided that you make no changes to it whatsoever.

2Above all we owe a debt to Sam Roweis (Toronto & NYU, now de-
ceased), who taught us to find and optimize justified scalar objective func-
tions. He will be sorely missed by all three of us. In addition it is a pleasure
to thank Mike Blanton (NYU), Scott Burles (D. E. Shaw), Daniel Foreman-
Mackey (Queens), Brandon C. Kelly (Harvard), Iain Murray (Edinburgh),
Hans-Walter Rix (MPIA), and David Schiminovich (Columbia) for valuable
comments and discussions. This research was partially supported by NASA
(ADP grant NNX08AJ48G), NSF (grant AST-0908357), and a Research Fel-
lowship of the Alexander von Humboldt Foundation. This research made use
of the Python programming language and the open-source Python packages
scipy, numpy, and matplotlib.

3When fitting is used for data-driven prediction—that is, using existing
data to predict the properties of new data not yet acquired—the conditions
for model applicability are weaker. For example, a line fit by the standard
method outlined in Section 1 can be, under a range of assumptions, the
best linear predictor of new data, even when it is not a good or appropriate
model. A full discussion of this, which involves model selection and clarity
about exactly what is being predicted (it is different to predict y given x
than to predict x given y or x and y together), is beyond the scope of this
document, especially since in astrophysics and other observational sciences
it is relatively rare that data prediction is the goal of fitting.

4The term “linear regression” is used in many different contexts, but in
the most common, they seem to mean “linear fitting without any use of the
uncertainties”. In other words, linear regression is usually just the procedure
outlined in this Section, but with the covariance matrix C set equal to the
identity matrix. This is equivalent to fitting under the assumption not just
that the x-direction uncertainties are negligible, but also that all of the y-
direction uncertainties are simultaneously identical and Gaussian.

Sometimes the term “linear regression” is meant to cover a much larger
range of options; in our field of astrophysics there have been attempts to
test them all (for example, see Isobe et al. 1990). This kind of work—testing
ad hoc procedures on simulated data—can only be performed if you are
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willing to simultaneously commit (at least) two errors: First, the linear re-
gression methods are procedures ; they do not (necessarily) optimize anything
that a scientist would care about. That is, the vast majority of procedures
fail to produce a best-fit line in any possible sense of the word “best”. Of
course, some procedures do produce a best-fit line under some assumptions,
but scientific procedures should flow from assumptions and not the other way
around. Scientists do not trade in procedures, they trade in objectives, and
choose procedures only when they are demonstrated to optimize their objec-
tives (we very much hope). Second, in this kind of testing, the investigator
must decide which procedure “performs” best by applying the procedures to
sets of simulated data, where truth—the true generative model—is known.
All that possibly can be shown is which procedure does well at reproducing
the parameters of the model with which the simulated data are generated!
This has no necessary relationship with anything by which the real data are
generated. Even if the generative model for the artificial data matches per-
fectly the generation of the true data, it is still much better to analyze the
likelihood created by this generative model than to explore procedure space
for a procedure that comes close to doing that by accident—unless, perhaps,
when computational limitations demand that only a small number of simple
operations be performed on the data.

5Along the lines of “egregious”, in addition to the complaints in the previ-
ous note, the above-cited paper (Isobe et al., 1990) makes another substantial
error: When deciding whether to fit for y as a function of x or x as a function
of y, the authors claim that the decision should be based on the “physics” of
x and y! This is the “independent variable” fallacy—the investigator thinks
that y is the independent variable because physically it “seems” independent
(as in “it is really the velocity that depends on the distance, not the distance
that depends on the velocity” and other statistically meaningless intuitions).
The truth is that this decision must be based on the uncertainty properties
of x and y. If x has much smaller uncertainties, then you must fit y as a
function of x; if the other way then the other way, and if neither has much
smaller uncertainties, then that kind of linear fitting is invalid. We have more
to say about this generic situation in later Sections. What is written in Isobe
et al. (1990)—by professional statisticians, we could add—is simply wrong.

6For getting started with modern data modeling and inference, the texts
Mackay (2003), Press et al. (2007), and Sivia & Skilling (2006) are all very
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useful.

7Even in situations in which linear fitting is appropriate, it is still often
done wrong! It is not unusual to see the individual data-point uncertainty
estimates ignored, even when they are known at least approximately. It is
also common for the problem to get “transposed” such that the coordinates
for which uncertainties are negligible are put into the Y vector and the
coordinates for which uncertainties are not negligible are put into the A
matrix. In this latter case, the procedure makes no sense at all really; it
happens when the investigator thinks of some quantity “really being” the
dependent variable, despite the fact that it has the smaller uncertainty. For
example there are mistakes in the Hubble expansion literature, because many
have an intuition that the “velocity depends on the distance” when in fact
velocities are measured better, so from the point of view of fitting, it is better
to think of the distance depending on the velocity. In the context of fitting,
there is no meaning to the (ill-chosen) terms “independent variable” and
“dependent variable” beyond the uncertainty or noise properties of the data.
This is the independent variable fallacy mentioned in note 5. In performing
this standard fit, the investigator is effectively assuming that the x values
have negligible uncertainties; if they do not, then the investigator is making
a mistake.

8As we mention in note 4, scientific procedures should achieve justified
objectives; this objective function makes that statement well posed. The
objective function is also sometimes called the “loss function” in the statistics
literature.

9The inverse covariance matrix appears in the construction of the χ2 ob-
jective function like a linear “metric” for the data space: It is used to turn
a N -dimensional vector displacement into a scalar squared distance between
the observed values and the values predicted by the model. This distance
can then be minimized. This idea—that the covariance matrix is a metric—is
sometimes useful for thinking about statistics as a physicist; it will return
in Section 7 when we think about data for which there are uncertainties in
both the x and y directions.

Because of the purely quadratic nature of this metric distance, the stan-
dard problem solved in this Section has a linear solution. Not only that, but
the objective function “landscape” is also convex so the optimum is global
and the solution is unique. This is remarkable, and almost no perturbation
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of this problem (as we will see in later Sections) has either of these proper-
ties, let alone both. For this standard problem, the linearity and convexity
permit a one-step solution with no significant engineering challenges, even
when N gets exceedingly large. As we modify (and make more realistic) this
problem, linearity and convexity will both be broken; some thought will have
to be put into the optimization.

10There is a difference between “uncertainty” and “error”: For some rea-
son, the uncertainty estimates assigned to data points are often called “er-
rors” or “error bars” or “standard errors”. That terminology is wrong: “They
are uncertainties, not errors; if they were errors, we would have corrected
them!” DWH’s mentor Gerry Neugebauer liked to say this; Neugebauer cred-
its the quotation to physicist Matthew Sands. Data come with uncertainties,
which are limitations of knowledge, not mistakes.

11In geometry or physics, a “scalar” is not just a quantity with a mag-
nitude; it is a quantity with a magnitude that has certain transformation
properties: It is invariant under some relevant transformations of the coor-
dinates. The objective ought to be something like a scalar in this sense,
because we want the inference to be as insensitive to coordinate choices as
possible. The standard χ2 objective function is a scalar in the sense that it is
invariant to translations or rescalings of the data in the Y vector space de-
fined in equation (2). Of course a rotation of the data in the N -dimensional
space of the {yi}Ni=1 would be pretty strange, and would make the covariance
matrix C much more complicated, so perhaps the fact that the objective is
literally a linear algebra scalar—this is clear from its matrix representation
in equation (7)—is something of a red herring.

The more important thing about the objective is that it must have one
magnitude only. Often when one asks scientists what they are trying to opti-
mize, they say things like “I am trying to maximize the resolution, minimize
the noise, and minimize the error in measured fluxes”. Well, those are good
objectives, but you can’t optimize them all. You either have to pick one,
or make a convex combination of them (such as by adding them together
in quadrature with weights). This point is so obvious, it is not clear what
else to say, except that many scientific investigations are so ill-posed that
the investigator does not know what is being optimized. When there is a
generative model for the data, this problem doesn’t arise.

12Of course, whether you are a frequentist or a Bayesian, the most scien-
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tifically responsible thing to do is not just optimize the objective, but pass
forward a description of the dependence of the objective on the parameters, so
that other investigators can combine your results with theirs in a responsible
way. In the fully Gaussian case described in this Section, this means passing
forward the optimum and second derivatives around that optimum (since a
Gaussian is fully specified by its mode—or mean–and its second derivative
at the mode). In what follows, when things aren’t purely Gaussian, more
sophisticated outputs will be necessary.

13We have tried in this document to be a bit careful with words. Following
Jaynes (2003), we have tried to use the word “probability” for our knowl-
edge or uncertainty about a parameter in the problem, and “frequency” for
the rate at which a random variable comes a particular way. So the noise
process that sets the uncertainty σyi has a frequency distribution, but if we
are just talking about our knowledge about the true value of y for a data
point measured to have value yi, we might describe that with a probability
distribution. In the Bayesian context, then—to get extremely technical—the
posterior probability distribution function is truly a probability distribution,
but the likelihood factor—really, our generative model—is constructed from
frequency distributions.

14The likelihood L has been defined in this document to be the frequency
distribution for the observables evaluated at the observed data {yi}Ni=1. It is
a function of both the data and the model parameters. Although it appears
as an explicit function of the data, this is called “the likelihood for the pa-
rameters” and it is thought of as a function of the parameters in subsequent
inference. In some sense, this is because the data are not variables but rather
fixed observed values, and it is only the parameters that are permitted to
vary.

15One oddity in this Section is that when we set up the Bayesian problem
we put the {xi}Ni=1 and {σ2

yi}Ni=1 into the prior information I and not into
the data. These were not considered data. Why not? This was a choice, but
we made it to emphasize that in the standard approach to fitting, there is
a total asymmetry between the xi and the yi. The xi are considered part of
the experimental design; they are the input to an experiment that got the yi
as output. For example, the xi are the times (measured by your perfect and
reliable clock) at which you chose a priori to look through the telescope, and
the yi are the declinations you measured at those times. As soon as there is
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any sense in which the xi are themselves also data, the method—Bayesian
or frequentist—of this Section is invalid.

16It remains a miracle (to us) that the optimization of the χ2 objective,
which is the only sensible objective under the assumptions of the standard
problem, has a linear solution. One can attribute this to the magical prop-
erties of the Gaussian distribution, but the Gaussian distribution is also the
maximum-entropy distribution (the least informative possible distribution)
constrained to have zero mean and a known variance; it is the limiting dis-
tribution of the central limit theorem. That this leads to a convex, linear
algebra solution is something for which we all ought to give thanks.

17Sigma clipping is a procedure that involves performing the fit, identifying
the worst outliers in a χ2 sense—the points that contribute more than some
threshold Q2 to the χ2 sum, removing those, fitting again, identifying again,
and so on to convergence. This procedure is easy to implement, fast, and
reliable (provided that the threshold Q2 is set high enough), but it has var-
ious problems that make it less suitable than methods in which the outliers
are modeled. One is that sigma clipping is a procedure and not the result of
optimizing an objective function. The procedure does not necessarily opti-
mize any objective (let alone any justifiable objective). A second is that the
procedure gives an answer that depends, in general, on the starting point
or initialization, and because there is there is no way to compare different
answers (there is no objective function), the investigator can’t decide which
of two converged answers is “better”. You might think that the answer with
least scatter (smallest χ2 per data point) is best, but that will favor solutions
that involve rejecting most of the data; you might think the answer that uses
the most data is best, but that can have a very large χ2. These issues re-
late to the fact that the method does not explicitly penalize the rejection
of data; this is another bad consequence of not having an explicit objective
function. A third problem is that the procedure does not necessarily con-
verge to anything non-trivial at all; if the threshold Q2 gets very small, there
are situations in which all but two of the data points can be rejected by the
procedure. All that said, with Q2 � 1 and standard, pretty good data, the
sigma-clipping procedure is easy to implement and fast; we have often used
it ourselves.

Complicating matters is the fact that sigma clipping is often employed
in the common situation in which you have to perform data rejection but
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you don’t know the magnitudes of your uncertainties {σ2
yi}Ni=1. We will say

a bit more about this in Section 6, but a better procedure is to include
the {σ2

yi}Ni=1 as (possibly restricted) model parameters and infer them and
marginalize over them also. This is only really tractable if you can assume
that all the data-point uncertainties are identical or you know something else
equally informative about their relative magnitudes.

18Outlier modeling of this kind was used by Press (1997) to perform a
meta-analysis of astronomical results, and is discussed at some length in a
general way by Jaynes (2003).

19The exponential outlier model has a total of N + 5 parameters, with
N data points: It has more parameters than data! Indeed, some would
consider optimization or inference in this situation to be impossible. Of
course it is not impossible, and for reasons that are instructive, though any
detailed discussion is beyond the scope of this document. Fundamentally,
optimization of this model is possible only when there are informative priors ;
in this case the informative prior is that all of the badness bits {qi}Ni=1 are
integers, and every one of them can take on only the value zero or unity. This
is a very strong prior, and limits the amount of information that can flow
from the parameters of interest (m and b) into the uninteresting parameters
{qi}Ni=1. More generally, there is no limit on the number of parameters that
can be constrained with a given data set; there is only a limit on the amount of
information that those parameters can carry or obtain from the data. There
is an additional subtlety, which goes way beyond the scope of this document,
which is that the marginalization over the uninteresting parameters integrates
out and thereby reduces the degeneracies.

20When flagging bad data, you might not want to give all points the same
prior probability distribution function over Pb, for example, when you com-
bine data sets from different sources. Of course it is rare that one has reliable
information about the unreliability of one’s data.

21One of the amusing things about the Bayesian posterior for the data re-
jections {qi}Ni=1 is that you can pick a particular data point J and marginalize
over (m, b, Pb, Yb, Vb) and all the qi except qJ . This will return the marginal-
ized posterior probability that point J is good. This is valuable for em-
barassing colleagues in meta-analyses (Press, 1997). Indeed, if embarassing
colleagues is your goal, then Bayesian methods for data rejection are use-
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ful: They permit parameter-independent (that is, marginalized) statements
about the probabilities that individual data points are bad. This is possible
even in the marginalized mixture model: For any data point, at any setting
of the parameters (m, b, Pb, Yb, Vb), the relative amplitude of the good and
bad parts of the generative frequency distributions in equation (17) is the
odds that the data point is bad (or good, depending on the direction of the
ratio and one’s definition of the word “odds”). It is possible therefore to
marginalize over all the parameters, obtaining the mean, for each data point
i, of the foreground frequency 〈[1− Pb] pfg(·)〉 (mean taken over all samples
from the posterior) evaluated at the data point and of the background fre-
quency 〈Pb pbg(·)〉. The ratio of these is the marginalized odds that data
point i is bad.

22The likelihood—for example, that in equation (17)—is the likelihood
“for the parameters” but it has units (or dimensions), in some sense, of in-
verse data, because it is computed as the probability distribution function
for observations, evaluated at the observed data. The likelihood, therefore, is
not something you can marginalize—the integral of the likelihood over a pa-
rameter has incomprehensible units. The posterior probability distribution
function, on the other hand, has units (or dimensions) of inverse parameters,
so it can be integrated over the parameter space. Marginalization, therefore,
is only possible after construction of a posterior probability distribution func-
tion; marginalization is only possible in Bayesian analyses. This is related
to the fact that the prior probability distribution function serves (in part)
to define a measure in the parameter space. You can’t integrate without a
measure.

If all you care about is parameters (m, b), and, furthermore, all you
care about is the MAP answer, you must chose the MAP values from the
marginalized posterior. This is because the MAP value of (m, b, Pb, Yb, Vb)
in the unmarginalized posterior will not, in general, have the same value of
(m, b) as the MAP value in the marginalized posterior. This point is impor-
tant in many real cases of inference: Even small departures from Gaussianity
in the posterior distribution function will lead to substantial shifts of the
mode under marginalization. Of course, if what you are carrying forward is
not the MAP result but a sampling from the posterior, a sampling from the
unmarginalized posterior will contain the same distribution of (m, b) values
as a sampling from the marginalized one, by definition.

This document is not an argument in favor of Bayesian approaches; some-
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times non-Bayesian approaches are much more expedient. What this docu-
ment argues for is generative modeling, which is demanding. The standard
objection to Bayesian methods is that they require priors, and those priors
are hard (some say impossible) to set objectively. But this difficulty—in most
problems of interest—pales in comparison to the difficulty of writing down a
justifiable or even approximate generative model for the data.

While we claim to be neutral on Bayesianism relative to frequentism,
there is one very important respect in which frequentists are at a disadvan-
tage when there are nuisance parameters. If the nuisance parameters are
powerful, and there are acceptable fits to the data that show a large range
in the parameters of interest—as there will be in these mixture models when
Pb is made large—then a frequentist, who is not permitted to marginalize,
will be able to conclude nothing interesting about the parameters of inter-
est anywhere other than at the maximum-likelihood point. That is, the
maximum-likelihood point might have a small Pb and very good results for
line parameters (m, b), but if the frequentist wants to be responsible and re-
port the full range of models that is acceptable given the data, the frequentist
must report that the data are also consistent with almost all the data being
bad (Pb ≈ 1) and just about any line parameters you like. Marginalization
stops this, because the specificity of the data explanation under small Pb

permits the small-Pb regions of parameter space to dominate the marginal-
ization integral. But if you have no measure (no prior), you can perform no
marginalization, and the responsible party may be forced to report that no
useful confidence interval on the line parameters are possible in this mixture
model. That is a perfectly reasonable position, but demonstrates the cost of
strict adherence to frequentism (which, for our purposes, is the position that
there is no believable or natural measure or prior on the parameters).

23There is a good introduction to Metropolis–Hastings MCMC in Press et
al. 2007, among other places.

24Variations of MCMC that go beyond Metropolis–Hastings—and the con-
ditions under such variations make sense—are described in, for example,
Gilks, Richardson, & Spiegelhalter (1995), Neal (2003), and Mackay (2003).

25Given a sampling of the posterior probability distribution function or the
likelihood function of the parameters, it is most responsible to report—if not
that entire sampling—some confidence intervals or credible intervals. There
is a terminology issue in which the term “confidence interval” has become
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associated with frequentist statistics, which is unfortunate because Bayesian
statistics is the calculus of plausibility or confidence. But whether you call
them confidence intervals or credible intervals, the standard way to produce
the confidence interval of fractional size f (f = 0.95 for the 95 percent
interval) on, say, your parameter m, is as follows: Rank the samples in order
of increasing m and take either the smallest interval that contains a fraction
f of them, or else the interval which excludes the first and last [1 − f ]/2 of
them. We usually do the latter, since it is fast and easy to explain. Then
a good value to report is the median of the sampling, and quantiles around
that median. But it does not matter much so long as the report is clear and
sensible.

26Posterior probability distribution functions and samplings thereof are
useful for propagating probabilistic information about a scientific result.
However, they must be used with care: If the subsequent data analyzer has
a prior that overlaps or conflicts with the prior used in making the posterior
sampling, he or she will need access not just to the posterior probability dis-
tribution function but to the likelihood function. It is the likelihood function
that contains all the information about the data—all the new information
generated by the experiment—and therefore it is the likelihood that is most
useful to subsequent users. Even a posterior sampling should be passed for-
ward with likelihood or prior tags so that the prior can be divided out or
replaced. Otherwise subsequent users live in danger of squaring (or worse)
the prior.

27If you are sigma clipping or doing anything that looks like standard least-
square fitting but with small modifications, it might be tempting to use the

standard uncertainty estimate
[
A>C−1A

]−1
. But that is definitely wrong,

because whatever encouraged you to do the sigma clipping or to make other
modifications is probably sufficient reason to disbelieve the standard uncer-
tainty estimate. In these cases you want either to be measuring the width
of your posterior probability distribution function (if you are a Bayesian)
or else using an empirical estimate of the uncertainty such as jackknife or
bootstrap.

Bayesians like to be smug here—and have some justification—because
the posterior distribution function gives the best fit parameters and the full
distribution around that best-fit point in parameter space. However, the
smugness must be tempered by the fact that within the context of a single
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model (such as the generative model described in Section 2), the Bayesian
analysis does not return any useful goodness-of-fit information; a bad model
can be constrained well by the data but still be dead wrong.

28Neither jackknife nor bootstrap make sense, in their naive forms, if there
is a significant dynamic range in the uncertainty variances σ2

yi of the data
points. This is because these techniques effectively treat all of the data
equally. Of course, both methods could be adjusted to account for this;
bootstrap could be made to randomly select points somehow proportionally
to their contribution to the total inverse uncertainty variance (it is the sum
of the σ−2yi that determines the total amount of information), and jackknife
trials could be combined in a weighted way, weighted by the total inverse
uncertainty variance. But these generalizations require significant research;
probably the methods should be avoided if there is a large diversity in the
σ2
yi.

29Assuming a Gaussian form is only conservative when you truly know
the variance of the noise. Gaussians penalize heavily outliers, so they are
not conservative in most situations. But if you included the outliers in your
variance calculation, then it is conservative to make the Gaussian assumption.
The issue is that it is almost impossible to make a variance estimate that
captures the outliers properly.

30We don’t recommend them, but there are many non-Gaussian meth-
ods for removing sensitivity to outliers, which involve softening the objective
function from χ2 (which depends quadratically on all residuals) to something
that depends on large residuals to a smaller power. The most straightfor-
ward way to soften the objective function is to lower the power to which
residuals are raised. For example, if we model the frequency distribution
p(yi|xi, σyi,m, b) not with a Gaussian but rather with a biexponential

p(yi|xi, σyi,m, b) =
1

2 si
exp

(
−|yi −mxi − b|

si

)
, (36)

where si is an estimate of the mean absolute uncertainty, probably correctly
set to something like si ≈ σyi. Optimization of the total log likelihood is
equivalent to minimizing

X =
N∑
i=1

|yi − f(xi)|
si

, (37)
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where f(x) is the straight line of equation 1. This approach is rarely jus-
tified, but it has the nice property that it introduces no new parameters.
Another straightforward softening is to (smoothly) cut off the contribution
of a residual as it becomes large. For example, replace χ2 with

χ2
Q =

N∑
i=1

Q2 [yi − f(xi)]
2

Q2 σ2
yi + [yi − f(xi)]2

, (38)

where Q2 is the maximum amount a point can contribute to χ2
Q (Hampel

et al., 1986). When each residual is small, its contribution to χ2
Q is nearly

identical to its contribution to the standard χ2, but as the residual gets sub-
stantial, the contribution of the residual does not increase as the square. This
is about the simplest robust method that introduces only one new parameter
(Q), and in principle, one can put a prior on Q, infer it, and marginalize it
out. In general these are both far less good alternatives than modeling the
outliers, because objective functions softer than χ2 are rarely justifiable in
terms of any generative model for the data. In this Section we modeled out-
liers by a method that can almost be interpreted in terms of a softer χ2; in
Section 5 we discuss (briefly) justifiable modifications to the objective func-
tion when the observational uncertainty distributions depart from Gaussians
in known ways. Nonetheless, even when there is not a good justification for
softening the objective function, it can sometimes be useful for generating a
robust fit with a minimum of effort.

Along the same lines, sometimes it is justifiable to use Student’s t-
distribution for a softened objective. That is because the t-distribution is
what you get when you believe that the uncertainties are Gaussian, you
don’t know their variances, but you imagine that the variances are drawn
from some particular distribution (inverse chi-squared), and you marginal-
ize.

31The possibility arises of having data points that are not true measure-
ments but only, for example, upper limits. In most contexts (in astrophysics,
anyway) an “upper limit” is caused by one of two things. Either the investi-
gator has taken the logarithm of a quantity that in fact, for some measure-
ments, went to zero or negative; or else the investigator is fitting a model to
a binned quantity and in some bins there are no objects or data. In the first
case, the best advice is not to take the logarithm at all. Fit a power-law or
exponential in the linear space rather than a straight line in the log space.
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In the second case, the best advice is to use the likelihood appropriate for
a Poisson process rather than a Gaussian process. Least-square fitting is
an approximation when the data are generated by a Poisson sampling; this
approximation breaks down when the number of objects per bin becomes
small. Optimizing the correct Poisson likelihood is not difficult, and it is the
only scientifically justifiable thing to do.

It is rare that there are true upper limits not caused by one of the above.
However, if neither of the above applies—perhaps because the investigator
was given only the limits, and not the details of their origins—the right thing
to do is to write down some generative model for the limits. This would be
some description of the “probability of the data given the model” where the
(say) 95-percent upper limit is replaced with a probability distribution that
has 95 percent of its mass below the reported limit value. This is ideally
done with a correct model of the measurement process, but it is acceptable
in cases of justifiable ignorance to make up something reasonable; preferably
something that is close to whatever distribution maximizes the entropy given
the reported and logical constraints.

32Frequentist model rejection on the basis of unacceptable χ2 should not
be confused with model comparison performed with χ2. If χ2 differs from
the number of degrees of freedom [N − 2] by something on the order of√

2 [N − 2], the model cannot be rejected on a χ2 basis. However, if two
equally plausible models differ from one another by a difference ∆χ2 substan-
tially larger than unity, the model with the lower χ2 can be preferred and the
higher rejected on that basis, even if the higher still shows an acceptable χ2.
This difference between model rejection and model comparison is counterin-
tuitive, but it emerges from the difference that in the model comparison case,
there are two models, not one, and they are both (by assumption) equally
plausible a priori. The conditions for model comparison are fairly strong,
so the test is fairly sensitive. In the case of correctly estimated uncertainty
variances and two models that are equally plausible a priori, the ∆χ2 value
between the models is (twice) the natural logarithm of the odds ratio be-
tween the models. For this reason, large ∆χ2 values generate considerable
confidence.

33Technically, Bayesians cannot reject a model outright on the basis of bad
χ2 alone; Bayesians can only compare comparable models. A Bayesian will
only consider the absolute value of χ2 to provide hints about what might be
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going wrong. Part of the reason for this is that a Bayesian analysis returns
a probability distribution over mutually exclusive hypotheses. This distribu-
tion or this set of probabilities integrates or sums to unity. If only one model
(“the data are drawn from a straight line, plus noise”) is considered, the
probabilities for the parameters of that model will integrate to unity and the
model cannot be disfavored in any sense. Of course, any time an investigator
considers only one model, he or she is almost certainly making a mistake, and
any conservative Bayesian data analyst will consider a large space of models
and ask about the evidence for the alternatives, or for complexification of
the current model. So a Bayesian can reject models on a χ2 basis—provided
that he or she has permitted a wide enough range of models, and provided
those models have somewhat comparable prior probabilities. Model rejection
and hypothesis comparison are large topics that go beyond the scope of this
document.

Many Bayesians argue that they can reject models without alternatives,
by, for example, comparing likelihood (or Bayes factor—the likelihood in-
tegrated over the prior) under the data and under artificial data generated
with the same model (with parameters drawn from the prior). This is true,
and it is a good idea for any Bayesian to perform this test, but there is still
no correct proababilistic statement that can be made about model rejection
in the single-model situation (you can’t reject your only model).

In general, the investigator’s decision-making about what models to con-
sider (which will be informed by tests like comparisons between likelihoods
and fake-data likelihoods) have an enormous impact on her or his scientific
conclusions. At the beginning of an investigation, this problem lies in the
setting of priors. An investigator who considers only a straight-line model for
her or his points is effectively setting insanely informative priors—the prior
probability of every alternative model is precisely zero! At the end of an in-
vestigation, this problem—what models to report or treat as confirmed—lies
in the area of decision theory, another topic beyond the scope of this doc-
ument. But even in a context as limited as straight-line fitting, it is worth
remembering that, as scientists, we are not just inferring things, we are mak-
ing decisions—about what is right and wrong, about what to investigate,
about what to report, and about what to advocate—and these decisions are
only indirectly related to the inferences we perform.

34One amusing aspect of the generative model we are about to write down
is that it is possible to marginalize it over all the parameters and all the
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true positions of the points along the linear relationship except for one and
thereby produce a marginalized posterior probability distribution function
for the true position of any individual data point, under the assumptions of
the generative model. That is, it is possible to reconstruct the missing data.

35The fact that the marginalization over the true positions of the points
reduces to a projection along the line—or onto the subspace orthogonal to
the line—makes this method very similar to that called “orthogonal least
squares”. This generative model justifies that procedure, in the case when
the orthogonal displacements are penalized by the properly projected uncer-
tainties.

36This probably means that although this two-dimensional fitting method
works, there is something fishy or improper involved. The model is only
strictly correct, in some sense, when the distribution along the line is uniform
over the entire range of interest. That’s rarely true in practice.

37The difference between the forward-fitting and reverse-fitting slopes is a
systematic uncertainty in the sense that if you are doing something unjus-
tifiable you will certainly introduce large systematics! This forward–reverse
procedure is not justifiable and it gives results which differ by substantially
more than the uncertainty in the procedure given in this Section. We have
already (note 4) criticized one of the principal papers to promote this kind
of hack, and do not need to repeat that criticism here.

38Why not use principal components analysis? In a nutshell: The method
of PCA does return a linear relationship for a data set, in the form of the
dominant principal component. However, this is the dominant principal com-
ponent of the observed data, not of the underlying linear relationship that,
when noise is added, generates the observations. For this reason, the output
of PCA will be strongly drawn or affected by the individual data point noise
covariances Si. This point is a subtle one, but in astrophysics it is almost
certainly having a large effect in the standard literature on the “fundamental
plane” of elliptical galaxies, and in other areas where a fit is being made to
data with substantial uncertainties. Of course PCA is another trivial, linear
method, so it is often useful despite its inapplicability; and it becomes appli-
cable in the limit that the data uncertainties are negligible (but in that case
everything is trivial anyway).

39The standard method for estimating the width of a linear relationship
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is to compare the scatter of the data points to the scatter expected if the
relationship is narrow. The estimated intrinsic scatter can be “found” in this
case by a procedure of subtracting in quadrature (intrinsic variance is ob-
served variance minus expected variance given observational uncertainties).
This is not a good idea in general. It doesn’t work at all if the data points
have a significant dynamic range in their measurement uncertainties, it can
produce an estimate of the intrinsic scatter variance that is negative, and
it returns no confidence interval or uncertainty. In the case of negligible x-
direction uncertainties, a better method is to add a parameter Vy which is a
variance to be added in quadrature to every data-point uncertainty variance;
this is what we advocate in the main text.

40One confusing issue in the subject of intrinsic scatter is the direction for
the scatter. If things are Gaussian, it doesn’t matter whether you think of the
scatter being in the x direction, the y direction, or the direction perpendicular
to the line (as we think of it in the method involving V in this Section).
However it must be made clear which direction is being used for the statement
of the result, and what the conversions are to the other directions (these
involve the angle θ or slope m of course).

41Density estimation by generative modeling, in situations of heteroscedas-
tic data, has been solved for situations of varying generality by Kelly (2007)
and Bovy, Hogg, & Roweis (2009).



References 55

References

Bovy, J., Hogg, D. W., & Roweis, S. T., 2009, Extreme deconvolution: in-
ferring complete distribution functions from noisy, heterogeneous, and in-
complete observations, arXiv:0905.2979 [stat.ME]

Jaynes, E. T., 2003, Probability theory: the logic of science (Cambridge Uni-
versity Press)

Gilks, W. R., Richardson, S., & Spiegelhalter, D., 1995, Markov chain Monte
Carlo in practice: interdisciplinary statistics (Chapman & Hall/CRC)

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A., 1986,
Robust statistics: the approach based on influence functions (New York:
Wiley)

Isobe, T., Feigelson, E. D., Akritas, M. G., & Babu, G. J., 1990, Linear
regression in astronomy, Astrophysical Journal 364 104

Kelly, B. C., 2007, Some aspects of measurement error in linear regression of
astronomical data, Astrophysical Journal 665 1489

Mackay, D. J. C., 2003, Information theory, inference, and learning algo-
rithms (Cambridge University Press)

Neal., R. M., 2003, Slice sampling, Annals of Statistics, 31(3), 705

Press, W. H., 1997, Understanding data better with Bayesian and global sta-
tistical methods, in Unsolved problems in astrophysics, eds. Bahcall, J. N.
& Ostriker, J. P. (Princeton University Press) 49–60

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P., 2007,
Numerical recipes: the art of scientific computing (Cambridge University
Press)

Sivia, D. S. & Skilling, J., 2006, Data analysis: a Bayesian tutorial (Oxford
University Press)


