O Sol - a nossa estrela

O Sol, nossa fonte de luz e de vida, é a estrela mais próxima de nós e a que melhor conhecemos. Basicamente, é uma enorme esfera de gás incandescente, em cujo núcleo acontece a geração de energia através de reações termo-nucleares. O estudo do Sol serve de base para o conhecimento das outras estrelas, que de tão distantes aparecem para nós como meros pontos de luz.

halpha
Foto do Sol na linha Halfa do hidrogênio, obtida pelo National Solar Observatory, EUA. Os filamentos escuros são proeminências.
Raio X 10384A

Apesar de parecer tão grande e brilhante (seu brilho aparente é 200 bilhões de vezes maior do que o de Sírius, a estrela mais brilhante do céu noturno), na verdade o Sol é uma estrela bastante comum. Suas principais características são:

Massa M = 1,989 x 1030 kg
Raio R = 696 000 km
Densidade média $\rho$ = 1409 kg/m3
Densidade central $\rho_c$ = 160 000 kg/m3
Distância 1 UA = 1,496 x 108 km
Luminosidade L=3,9×1026 watts=3,9×1033 ergs/s
Temperatura efetiva Tef = 5785 K
Temperatura central Tc = 10 000 000 K
Composição química principal (No) Hidrogênio = 91,2 %
  Hélio = 8,7%
  Oxigênio = 0,078 %
  Carbono = 0,043 %
Período rotacional no equador 25,67 d
                na latitude 75° 33,40 d

Estrutura do Sol

coroa 91 estrutsol Zonas
O modelo representado na figura mostra as principais regiões do Sol. A fotosfera, com cerca de 330 km de espessura e temperatura de 5785 K, é a camada visível do Sol. Logo abaixo da fotosfera se localiza a zona convectiva, se estendendo por cerca de 15% do raio solar. Abaixo dessa camada está a zona radiativa, onde a energia flui por radiação. O núcleo, com temperatura de cerca de 10 milhões de graus Kelvin, é a região onde a energia é produzida, por reações termo-nucleares. A cromosfera é a camada da atmosfera solar logo acima da fotosfera. Ela tem cor avermelhada e é visível durante os eclipses solares, logo antes e após a totalidade. Estende-se por 10 mil km acima da fotosfera e a temperatura cresce da base para o topo, tendo um valor médio de 15 mil K. Ainda acima da cromosfera se encontra a coroa, também visível durante os eclipses totais. A coroa se estende por cerca de dois raios solares.

A fotosfera

Foto do Sol na linha de 584 Å do hélio (HeI), obtida pelo satélite SOHO (The Solar and Heliospheric Observatory), da ESA/NASA
sol584

A fotosfera do Sol tem a aparência da superfície de um líquido em ebulição, cheia de bolhas, ou grânulos. Este fenômeno é chamado de granulação fotosférica. Os grânulos têm em torno de 5000 km de diâmetro e duram cerca de 10 min cada. Eles marcam os topos das colunas convectivas de gás quente, que se forma na zona convectiva, logo abaixo da fotosfera. As regiões escuras entre os grânulos são regiões onde o gás mais frio e mais denso escorre para baixo.
conveccao
As células de conveção têm cerca de 5000 km e se movimentam em escalas de 10 minutos
Foto do Sol em luz branca, mostrando algumas manchas solares
sunspot
O fenômeno fotosférico mais notável é o das manchas solares, regiões irregulares que aparecem mais escuras do que a fotosfera circundante e que muitas vezes podem ser observadas mesmo a olho nu, embora olhar diretamente para o Sol só não é perigoso quando ele está no horizonte. As manchas foram registradas na China já no ano 28 a.C. As manchas solares seguem um ciclo de 11 anos em que o número de manchas varia entre máximos e mínimos. No gráfico abaixo, está registrado o número médio mensal de manchas.
ciclos
irradiacao
Irradiação solar (constante solar) medida nos últimos anos através de satélites.

Da coroa emana o vento solar, um fluxo contínuo de partículas emitidas da coroa que acarretam uma perda de massa por parte do sol em torno de $10^{-13} M_\odot$ por ano. O vento solar que atinge a Terra (aproximadamente 7 prótons/cm3 viajando a cerca de 400 km/s) é capturado pelo campo magnético da Terra, formando o cinturão de Van Allen, na magnetosfera terrestre.

vanallen trajetoria
Este cinturão, descoberto pelo físico americano James Alfred Van Allen (1914-2006) em 1958, só permite que as partículas carregadas entrem na atmosfera da Terra pelos pólos, causando as auroras, fenômenos luminosos de excitação e des-excitação dos átomos de oxigênio.
auroras
UV Proeminencia CME

Além das partículas do vento solar, existem grandes ejeções de massa associadas às proeminências, que quando atingem a Terra causam danos às redes elétricas e aos satélites. O penúltimo máximo do ciclo de 11 anos ocorreu em 1989 e logo após uma grande proeminência solar, a rede elétrica na província de Quebec, no Canadá, sofreu uma grande sobrecarga elétrica que causou vários danos aos equipamentos. Algumas regiões da província ficaram até duas semanas sem luz elétrica. Em 1994, o satélite de comunicações E2 teve alguns circuitos queimados por uma sobrecarga estática, também associada com a ejecção de uma nuvem de plasma solar. O máximo deste ciclo solar ocorreu em 15 de fevereiro de 2001, quando o campo magético solar reverteu de polaridade.

Borboleta
Diagrama borboleta mostrando a variação do campo magnético do Sol com o tempo e a reversão do campo com o período de 11 anos.
Sol Max
Imagem do Sol em 1710 Å, mostrando o Sol no ano de 1996, Sol mínimo, e perto do máximo.
cme cme
Ejeção Coronal de Massa em 14 de setembro de 1999, fotografada pelo SOHO em 3040 Å.

magentosfera Normalmente as partículas carregadas são desviadas pelo campo magnético da Terra para o Cinturão de Van Allen, e somente chegam à Terra próximas aos pólos. Entretanto o campo magnético terrestre não é um simples dipolo e existe uma depressão no campo, no Atlântico Sul, que faz com que partículas carregadas também cheguem ao solo na região conhecida como Anomalia Geomagnética do Atlântico Sul.

saas
Anomalia geomagnética do Atlântico Sul: a região vermelha representa alto fluxo de elétrons com energia acima de 30 KeV próximo ao solo.
saa2s
Anomalia geomagnética do Atlântico Sul: cada ponto branco ou amarelo marca a posição de um satélite onde ocorreu defeito na memória do computador.

A Anomalia Geomagnética do Atlântico Sul é uma mancha de fluxo invertido, isto é, uma mancha com fluxo magnético direcionado para dentro no hemisfério de fluxo direcionado para fora. Existem outras manchas menores, tanto no hemisfério norte quanto no hemisfério sul, de acordo com as medições de campo magnético pelos satélites Magsat em 1980 e Ørsted em 2000.

estrutura Terra campo magnetico
Estas reversões de fluxo são similares às que causam as manchas solares: o fluxo de material líquido e ionizado no núcleo da Terra é convectivo, turbulento e distorcido também por rotação diferencial do núcleo externo, líquido (2900 km a 5100 km de profundidade), sobre o núcleo sólido interno, cristalizado e que libera calor latente na cristalização das camadas externas e de separação de elementos menos densos, como sultefo de ferro e óxido de ferro. Estas manchas mudam de tamanho com o tempo e, quando aumentam até dominar o hemisfério, causam a reversão do campo magnético da Terra. A última reversão ocorreu há 780 mil anos.

28 Out 2003 Quando manchas solares de polaridades magnéticas opostas colidem, há cancelamento do campo magnético que pode provocar um flare, um aumento significativo da emissão de radiação eletromagnética no local, principalmente no ultravioleta e raio-X. Se esta radiação atingir a Terra, há um aumento na fotoioniozação da atmosfera, com um aumento súbito no número de elétrons livres, que perturbam as ondas de rádio, inclusive as usadas pelo GPS.

Goes 8
Aumento do fluxo de raios-X detectado pelo satélite Goes 8 após um grande flare solar.
As ejeções coronais de massas são bolhas de gás quente (plasma), de cerca de 1 a 10 bilhões de toneladas, aquecidas pelos campos magnéticos do Sol. Os campos magnéticos do Sol se enrolam devido ao movimento turbulento de convecção mas também devido à rotação diferencial, que faz com que o equador solar complete uma volta em 25 dias, enquanto que as regiões próximas aos pólos completam uma volta em 36 dias. A desconexão do campo magnético solar pode ocorrer em alguns minutos e tem uma energia equivalente a milhares de bombas atômicas.

As ejeções coronais de massa viajam a aproximadamente 1 milhão km/hr e levam de um a quatro dias para alcançar a Terra. Quando atingem a Terra, têm milhões de quilômetros de extensão e podem causar:

Para exemplificar, em 1994 os satélites de comunicação canadenses Anik E1 e E2, assim como o satélite da AT&T Telstar 1, de TV e dados e o satélite Galaxy 4, que em 1998 emudeceu 45 milhões de pagers em todo o mundo, foram todos danificados por partículas aceleradas decorrentes de tempestades solares. Cada satélite tem custo acima de 100 milhões de dólares. Em agosto de 1972 houve uma flutuação na rede elétrica de Winsconsin, nos Estados Unidos, de 2500 volts e a queima de um transformador de 230 000 volts na Columbia Britânica, no valor de 100 milhões de dólares. Uma ejeção coronal de massa também causou a queima de transformadores no Quebec em 13 de março de 1989, deixando 6 milhões de pessoas sem energia elétrica por nove horas e em algumas regiões daquela província do Canadá por até duas semanas, com um prejuízo superior a 100 milhões de dólares.

Salem
Transformador da Public Service Electric and Gas (PSE&G) na Salem Nuclear Generating Station em New Jersey, nos Estados Unidos, queimado pelas correntes elétricas geomagneticamente induzidas, causadas pela tempestade geomagnética de 13-14 de março de 1989. O custo total do dano foi US$ 20 milhões..

A energia do Sol

Tão logo foi conhecida a distância do Sol, em 1673, foi possível determinar a sua luminosidade, que é a potência que ele produz. As medidas mostram que cada metro quadrado na Terra recebe do Sol uma potência (energia/segundo) de 1400 watts [James Watt (1736-1819)], ou seja, a potência de 14 lâmpadas de 100 watts/m2. O valor mais preciso da constante solar é 1367,5 W/m2, e varia 0,3% durante o ciclo solar de 11 anos. Multiplicando-se essa potência recebida na Terra pela área da esfera compreendida pela órbita da Terra em torno do Sol, determina-se a luminosidade do Sol em 3,9×1026 watts = 3,9×1033 ergs/s.

A constante solar varia, dependendo da época no ciclo de 11 anos, de 1364,55 a 1367,86 Watts/m2

Essa quantidade de energia é equivalente à queima de 2×1020 galões de gasolina por minuto.

Em 1937 Hans Albrecht Bethe (1906-) propôs a fonte hoje aceita para a energia do Sol: as reações termo-nucleares, na qual quatro prótons são fundidos em um núcleo de hélio, com liberação de energia. O Sol tem hidrogênio suficiente para alimentar essas reações por bilhões de anos. Gradualmente, à medida que diminui a quantidade de hidrogênio, aumenta a quantidade de hélio no núcleo. O Sol transforma aproximadamente 600 milhões de toneladas de hidrogênio em hélio por segundo. Veja mais sobre este assunto no capítulo sobre estrelas.

Segundo os modelos de evolução estelar, daqui a cerca de 1,1 bilhão de anos o brilho do Sol aumentará em cerca de 10%, que causará a elevação da temperatura aqui na Terra, aumentando o vapor de água na atmosfera. O problema é que o vapor de água causa o efeito estufa. Daqui a 3,5 bilhões de anos, o brilho do Sol já será cerca de 40% maior do que o atual, e o calor será tão forte que os oceanos secarão completamente, exacerbando o efeito estufa. Embora o Sol se torne uma gigante vermelha após terminar o hidrogênio no núcleo, ocorrerá perda de massa gradual do Sol, afastando a Terra do Sol até aproximadamente a órbita de Marte, mas exposta a uma temperatura de cerca de 1600 K (1327 C). Com a perda de massa que levará a transformação do Sol em uma anã branca, a Terra deverá ficar a aproximadamente 1,85 UA.
CME Flare CME
Em 30 de outubro de 2003 ocorreu uma tempestade geomagnética de categoria máxima, que durou 24 horas, vinda de um flare que ocorreu em 28 de outubro de 2003. A ejeção coronal de massa que atingiu a Terra viajou com velocidades da ordem de 7 milhões km/h. Em 4 de novembro de 2003 ocorreu o maior flare solar já registrado.
proxima Estrelas
Volta Astronomia e Astrofísica

©
Modificada em 17 maio 2007