Iniciamos com a equação de movimento (1) que derivamos:

(1)
Multiplicando-se a equação (1) escalarmente por
temos:
Como
=
e
=
temos:
Seja α
o ângulo entre o raio vetor e a velocidade:
Tendo em vista que cos(-α)=cos(α),
o primeiro termo da equação é
e o segundo termo da equação:
podemos escrever nossa equação como:
de onde se conclui imediatamente que o termo derivado é uma constante, já que sua derivada é nula:
v2 -

= ε
= constante
(
2)
v2 -

=ε = constante
que é a equação de energia do sistema
(ε = energia por unidade de massa)
Próxima: Conservação do momentum angular
Volta: Leis de Kepler Generalizadas
Anterior: Equação do movimento
©
Modificada em 30 jun 1998